1. In your own words, what is meant by "dynamic equilibrium" and how does it relate to chemical reactions? the state where the concentration of reactants and products has stopped changing
2. Determine which of the following reactions have $\mathrm{Kp}=\mathrm{Kc}$. Clearly explain your choice.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$$
\mathrm{O}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \quad \quad \Delta n_{g a s}=\varnothing \text { so }
$$

3. Calculate K_{c} for the following reactions given the equilibrium concentrations listed.

$$
\begin{gathered}
2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
{[\mathrm{NOCl}]=9.64 \mathrm{mM} \quad\left[\mathrm{Cl}_{2}\right]=4.83 \mathrm{mM} \quad[\mathrm{NO}]=2.88 \mathrm{mM}}
\end{gathered}
$$

4. Using what you learned in Problem 3, determine Kc for the following reaction:

$$
\mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

5. Calculate K_{P} for the reaction in problem 3 if the temperature is $250^{\circ} \mathrm{C}$.
6. Determine the vapor pressure of water (in atm.) at $75^{\circ} \mathrm{C}$ is $\mathrm{Kp}=38.5630 \mathrm{kPa}$
7. Consider the following reaction. 1 atm of each reactant is mixed together in a 1 L reaction vessel at 500 ${ }^{\circ} \mathrm{C}$. At equilibrium the final pressure is found to be 1.924 atm . Determine Kp .

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

8. Determine the total pressure at equilibrium if 0.20 atm H_{2} and 3.0 atm $\mathrm{CH}_{4}(\mathrm{~g})$ are mixed in the presence of 4 grams of carbon at $900^{\circ} \mathrm{C}$.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g}) \quad \mathrm{Kp}=0.4725 \mathrm{~atm}^{-1}\left(\text { at } 900^{\circ} \mathrm{C}\right)
$$

9. Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$that will form if $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ reacts with liquid water to form $\mathrm{H}_{3} \mathrm{O}^{+}$ and HCO_{3}^{-1}. $\mathrm{Kc}=4.3 \times 10^{-7} \mathrm{M}^{-1}$ at $25^{\circ} \mathrm{C}$
10. If 25.45 atm of $\mathrm{N}_{2}, 10.42 \mathrm{~atm}$. of H_{2}, and 23.55 atm of NH_{3} are present in a reaction vessel, determine if ammonia will decompose or be synthesized.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{Kp}=83.4 \mathrm{~atm}
$$

$$
\begin{aligned}
& \text { 3. } \text { (OCD }=9.64 \mathrm{~mm} \left\lvert\, \frac{10^{-3} \mathrm{M}}{1 \mathrm{~mm}}=0.00964 \mathrm{M}\right. \\
& \left(C l_{2}\right)=0.00483 M \\
& {[\text { NO] }=0.00288 \mathrm{M}} \\
& K_{c}=\frac{\left(\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}{(\mathrm{NOC} 1)^{2}}=\frac{(0.00288 \mathrm{M})^{2}(0.00483 \mathrm{M})}{(0.00964 \mathrm{M})^{2}}=4.311 \times 10^{-4} \mathrm{M} \\
& \text { 4. } \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}+1 / 2 \mathrm{Cl}_{2}
\end{aligned}
$$

This is $1 / 2$ the equilibrium in problem 3

$$
K=\left(4.311 \times 10^{-4} M\right)^{1 / 2}=0.0208 M^{1 / 2}
$$

5. $\quad T=250+273.15=523.15 \mathrm{~K} \quad \Delta n_{g 4}=1$

$$
K_{P}=4.311 \times 10^{-4}[(0.08206)(523.15)]^{\prime}=0.0185 \mathrm{~atm}
$$

6. $K_{P}=P_{H_{20}}=38.5630 \mathrm{KPa} \left\lvert\, \frac{1 \mathrm{~atm}}{101.325 \mathrm{KPa}}=0.381 \mathrm{~atm}\right.$
7.

$$
\begin{aligned}
& \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \\
& \begin{array}{ccc}
1.00 & 1.00 & \varnothing \\
C & -x & -3 x
\end{array}+2 x \\
& \text { E 1.0-x } 1-3 x \quad 2 x \\
& P_{N_{2}}=1-0.038=0.962 \mathrm{~atm} \\
& P_{\mathrm{Hz}}=1-3(0.038)=0.586 \mathrm{~atm} \\
& P_{\mathrm{NH}_{3}}=2(0.038)=0.076 \mathrm{~atm} \\
& P_{\text {Tot }}=1.924=1-x+1-3 x+24 \\
& 1.924=2-2 x \\
& x=0.038 \mathrm{~atm} \\
& K_{p}=\frac{(0.962)(0.856)^{3}}{(0.076)^{2}}=8.63 \times 10^{-3} \mathrm{a} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. } \quad \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g}) \\
& \text { I } 0.2 \mathrm{~atm} 3.0 \mathrm{~atm} \\
& \text { C -2x }+x \\
& \text { E 0.2-2x } \quad 3+x \\
& K_{p}=0.4725=\frac{3+\lambda}{(0.2-2 \lambda)^{2}}=\frac{3+x}{0.04-0.8 x+4 \lambda^{2}} \\
& 3+x=0.0189-0.378 x+1.89 x^{2} \\
& 0=1.89 x^{2}-1.378 x-2.9811 \\
& 1.378 \pm \frac{\sqrt{(1.378)^{2}-4(1.89)(-2.981)}}{2(1.89)} \\
& x=-0.9432 \\
& x=1.6723 \leftarrow \text { not possible } \\
& (0.2-2(x))=\text { negatin } \\
& P_{H_{2}}=0.2-2(-0.9432)=2.0864 \mathrm{~atm} \\
& P_{\mathrm{CH}_{4}}=3+-0.9432=2.0568 \mathrm{~atm} \\
& P_{\text {pot }}=2.0864+2.0568=4.1432 \mathrm{~atm} \\
& \text { 9. } \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}(\mathrm{Q}) \geqslant \mathrm{HCO}_{5}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \begin{array}{cccc}
I & 0.5 \mu & 0 & 0 \\
C & -\lambda & +\lambda & +\lambda \\
E & 0.5-x & x & x
\end{array} \\
& K_{c}=4.3 \times 10^{-7}=\underbrace{\frac{x^{2}}{0.5-x}}_{0.5} \quad \text { use shatat } \\
& 4.3 \times 10^{-7}=\frac{x^{2}}{0.5} \\
& x^{2}=2.15 \times 10^{-8} \\
& x=4.64 \times 10^{-4} \mathrm{M} \\
& \left(\mathrm{H}_{3} \mathrm{o}^{+}\right)=4.64 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

$$
\text { 10. } \quad Q=\frac{(24.45)(10.42)^{3}}{(23.55)^{2}}=49.88
$$

