Answers to the problems in RED need to be submitted through the course website.

Challenging Review Questions. (Bonus: Due 2/6)

The first 8 ionization energies of element " X " are shown below (in aJ). Use this information to answer 1-4.

IE_{1}	IE	IE_{2}	IE_{4}	IE_{5}	IE	IE	IE
1.68	3.17	4.84	8.24	10.42	35.32	42.23	49.60

1. How many valence electrons does X have?
2. What group does X belong to?
3. Which element would be most similar to X? Zinc, Iron, Calcium, Tin, Bismuth, or Bromine?
4. Clearly explain why the difference between $I E_{3}$ and $I E_{4}$ is greater than the difference between $I E_{2}$ and IE_{3}.
5. Determine the wavelength of the photon needed to move an electron from the ground state of a hydrogen atom to the $7^{\text {th }}$ energy level. Report your answer in nm .
6. The ionic radius of ${ }^{58} \mathrm{Ni}^{2+}$ is 63 pm . Calculate its density in $\mathrm{g} \mathrm{mL}^{-1}$. Hint: a similar problem is on the $1^{\text {st }}$ exam.
7. Using your understanding of periodic trends, order these elements by increasing density (least dense to most dense). O, N. B, F

Ions and Ionic Compounds (Bonus: 2/6)

8. Predict common charge on each of the following. If more than one exist, write them all. If a common charge does not exist, select 0 .

Hydrogen Strontium Lead Aluminum Fluorine Selenium Argon
9. Classify each of the following as covalent or ionic bonds:
$\begin{array}{lllll}\mathrm{N} \text { and } \mathrm{N} & \mathrm{N} \text { and } \mathrm{Na} \quad \mathrm{Ca} \text { and } \mathrm{H} & \mathrm{Sc} \text { and } \mathrm{Cl} & \mathrm{Cl} \text { and } \mathrm{F} \quad \mathrm{Na} \text { and } \mathrm{H}\end{array}$
10. Predict the ionic compound that will form between the following:
a. Nitrogen and sodium
b. Magnesium and Nitrogen
c. Aluminum and Phosphorus
d. Selenium and Potassium
11. For each of the following lists, identify all variable charge metals.
a. Na, Zn, Bi, Re, Mn, In
b. Ru, Cd, Sn, Zr, K, Al
12. Determine the electron configuration for each of the following. You may use shorthand notation.
Fe^{+3}
Fe^{+2}
In^{+1}
In $^{+3}$
Cu^{+1}
Cu^{+2}
Mn^{+2}
Mn^{+7}
13. Name each of the following:
$\begin{array}{llllll}\mathrm{NaH} & \mathrm{BeF}_{2} & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} & \mathrm{Na}_{2} \mathrm{CO}_{3} & \mathrm{CrCl}_{6} & \mathrm{Fe}_{2} \mathrm{~S}_{3}\end{array}$
14. Determine the molecular formula:

Zinc Chloride Thallium (I) Phosphate Thallium (III) Phosphide Tin (IV) Oxide Sodium nitride Sodium nitrite Sodium nitrate Iron (III) Selenide

Molecular Compounds (Bonus: 2/13)

You will need to draw the Lewis Structure for each compound to answer most of these questions

Answer problem 15-19 for each of these compounds.
$\begin{array}{lllllllllll}\mathrm{ClO}_{2}{ }^{-} & \mathrm{ClO}_{3}{ }^{-} & \mathrm{CO}_{2} & \mathrm{CO}_{3}{ }^{2-} & \mathrm{PCl}_{3} & \mathrm{NO}_{2}^{-} & \mathrm{O}_{3} & \mathrm{~S}_{3} & \mathrm{NO}_{3}^{-} & \mathrm{I}_{2} \mathrm{~F}^{-}\end{array}$
15. What is the central atom of the compound?
16. How many double bonds are present in the compound?
17. How many lone pairs are on each atom?
18. What is the formal charge on each atom?
19. Does this molecule have resonance forms? If yes, how many resonance forms exist?
20. For each pair, determine which molecule is the most stable. Give a brief explanation why you made your selection.
a. BrO_{3}^{-}vs. FO_{3}^{-}
b. NO_{4}^{-3} vs. PO_{4}^{-3}
c. $\mathrm{I}_{3}{ }^{-}$vs. $\mathrm{F}_{3}{ }^{-}$
21. For each of the following situations, determine the molecular formula for a neutral molecule made from only nitrogen and chlorine that contains:
a. A single bond between the nitrogen atoms.
b. A double bond between the nitrogen atoms.
22. Name each of the following compounds.

$$
\begin{array}{llll}
\mathrm{N}_{2} \mathrm{O}_{2} & \mathrm{~N}_{2} \mathrm{O}_{4} & \mathrm{C}_{2} \mathrm{H}_{6} & \mathrm{SF}_{6}
\end{array}
$$

23. For each pair, pick the molecule that has the strongest bond between the indicated atoms.
a. O_{2} vs $\mathrm{H}_{2} \mathrm{O}_{2} \quad$ Compare $\mathrm{O}-\mathrm{O}$ bonds
b. N_{2} vs. $\mathrm{N}_{2} \mathrm{H}_{2} \quad$ Compare $\mathrm{N}-\mathrm{N}$ bonds
c. $\mathrm{C}_{2} \mathrm{H}_{6}$ vs. $\mathrm{C}_{2} \mathrm{H}_{4} \quad$ Compare $\mathrm{C}-\mathrm{C}$ bonds
24. For each pair, pick the molecule that has the longest bond between the indicated atoms.
a. O_{2} vs $\mathrm{H}_{2} \mathrm{O}_{2} \quad$ Compare $\mathrm{O}-\mathrm{O}$ bonds
b. N_{2} vs. $\mathrm{N}_{2} \mathrm{H}_{2} \quad$ Compare $\mathrm{N}-\mathrm{N}$ bonds
c. $\mathrm{C}_{2} \mathrm{H}_{6}$ vs. $\mathrm{C}_{2} \mathrm{H}_{4} \quad$ Compare $\mathrm{C}-\mathrm{C}$ bonds
25. Name each of the following:
a. HCl
b. $\mathrm{H}_{2} \mathrm{SO}_{4}$
c. HNO_{3}
d. HBrO_{2}
e. HBrO_{4}
f. HBrO
26. Write the chemical formula for each compound.
a. Nitrous acid
b. Sulfurous acid
c. Carbonic acid
d. Hydrobromic acid
e. Acetic acid

Molecular Geometry, Polarity, and Hybridization (Bonus: 2/16)

27. What is the hybridization of each boldfaced atom in:
$\mathrm{CCl}_{3} \mathrm{~F}$
NH_{3}
$\mathrm{Br}_{3}{ }^{-1}$
XeF_{4}
SF_{4}
SeF_{6}
$\mathrm{SO}_{3}{ }^{-2}$
28. For each of the following pairs, determine which has smaller bond angles.
a. $\mathrm{CH}_{2} \mathrm{O}$ vs. $\mathrm{CH}_{4} \quad$ compare $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angles
b. $\mathrm{NH}_{4}{ }^{+}$vs. NH_{3} compare $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angles
c. SO_{3} vs. SO_{2} compare O-S-O bond angles
d. SOF_{4} vs. SF_{4} compare F-S-F bond angles
29. Draw the Lewis structure for each molecule listed below and answer each of following questions about the central atom.
a. Determine the electron geometry.
b. Determine the molecular geometry.
c. Determine the hybridization.
BrF_{3}
PH_{3}
$\mathrm{Br}_{3}{ }^{-1}$
XeF_{4}
SF_{4}
SeF_{6}
$\mathrm{SO}_{3}{ }^{-2}$
30. Determine how many sigma bonds and pi bonds are present between the indicated atoms.
a. $\mathrm{CH}_{2} \mathrm{O}$
C and O
b. HCN
C and N
31. Determine if each of the following molecules are polar:
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$ (C-O-C connectivity)
$\mathrm{CBr}_{3} \mathrm{~F}$
XeF_{2}
$\mathrm{CH}_{2} \mathrm{NH}$
32. For each of the following molecules, identify ALL intermolecular forces that stabilize condensed phases.
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
PH_{3}
HF
HCl
NaCl
33. For each of the following pairs, determine which has the higher melting temperature.
CH_{4} or $\mathrm{CF}_{4} \quad \mathrm{CF}_{4}$ or $\mathrm{CBr}_{3} \mathrm{~F} \quad \mathrm{PH}_{3}$ or $\mathrm{NH}_{3} \quad \mathrm{HF}$ or $\mathrm{HCl} \quad \mathrm{TeH}_{2}$ or SeH_{2}
34. Use Molecular Orbital (MO) Theory to determine the bond order and number of unpaired electrons for each of the following diatomic atoms. Recall that the orbital order changes when Oxygen or Fluorine are involved:

MO order for just carbon and/or nitrogen: $\sigma_{2 s}, \sigma_{2 s^{*}}{ }^{*}, \pi_{2 p}, \sigma_{2 p}, \pi_{2 p}{ }^{*}, \sigma_{2 p}{ }^{*}$
MO order when oxygen and/or fluorine are part of the molecule: $\sigma_{2 \mathrm{~s}}, \sigma_{2 s^{*}}{ }^{*}, \sigma_{2 \mathrm{p}}, \pi_{2 \mathrm{p}}, \pi_{2 \mathrm{p}}{ }^{*}, \sigma_{2 \mathrm{p}}{ }^{*}$
C_{2}
CO
CN^{-1}
N_{2}
O_{2}
NO
OF^{+1}
OF^{-1}

Challenge Questions

Submit your answers to this question directly to me for bonus points. You are strongly encouraged to stop by my office with questions.
35. It is possible to mathematically predict if a compound will be ionic or covalent using measurable values for several physical properties that we've discussed in class. To a first approximation, this can be accomplished by considering:

- the amount of energy needed to ionize the cation $X \rightarrow X^{+}+e-$
- the amount of energy gained when the anion forms $X+e-\rightarrow X-$
- the charge stabilization gained when the two ions interact $\quad E_{p}=231 \mathrm{aJ} \cdot p m\left(\frac{q_{1} q_{2}}{r}\right)$

Using the data in the table below, determine which of the following ionic compounds forms most favorably. Clearly justify your answer.

$\mathrm{NaF}, \mathrm{NaCl}, \mathrm{NaBr}, \mathrm{KF}, \mathrm{KCl}$, or KBr

Atom	Ionization Energy 1 (aJ)	Electron Affinity 1 (aJ)	Ionic Radius $\mathbf{(p m)}$
Sodium	0.823		105
Potassium	0.695		138
Chlorine		0.5795	181
Fluorine		0.5449	113
Bromine		0.5688	196

36. The following are descriptions of two different compounds. Your task is to determine the Lewis structure of the compound.
a. This monovalent anion (meaning a -1 charge) consists of a neutral central atom from the $4^{\text {th }}$ shell with trigonal pyramidal geometry. It is bonded to two halogens from the $3^{\text {rd }}$ shell and one shell 2 element that carries a -1 formal charge. The central atom has one pi bond.
b. This monovalent anion consists of a neutral central atom from the $5^{\text {th }}$ shell with square pyramidal geometry. It is covalently bonded to two different types of atoms from the $2^{\text {nd }}$ shell, none of which carry a permanent formal charge of -1 . One pi bond exists in this molecule and two resonance forms can be drawn.

Black Problems:

8. H^{+1} or $\mathrm{H}^{-1} \quad \mathrm{Sr}^{+2} \quad \mathrm{~F}^{-1} \quad \mathrm{Se}^{-2}$
9. $\mathrm{Na}_{3} \mathrm{~N} \quad \mathrm{Mg}_{3} \mathrm{~N}_{2}$
10. $\mathrm{Fe}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{5} \quad \mathrm{In}^{+}:[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} \quad \mathrm{Cu}^{+2}:[\mathrm{Ar}] 3 \mathrm{~d}^{9}$ Mn^{+2} : $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
11. $\mathrm{ZnCl}_{2} \quad$ TIP $\quad \mathrm{NaNO}_{2} \quad \mathrm{NaNO}_{3}$
12. $\mathrm{ClO}_{3}{ }^{-}=2 \quad \mathrm{CO}_{2}=2 \quad \mathrm{CO}_{3}{ }^{2-}=1 \quad \mathrm{PCl}_{3}=0 \quad \mathrm{O}_{3}=1$ $\mathrm{NO}_{3}{ }^{-}=1$
13. $\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}=0$ the oxygen double bond $=0$, oxygen with single bond $=-1 \quad \mathrm{CO}_{2} \rightarrow \mathrm{C}=0 \quad \mathrm{O}=0$
$\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{C}=0$ the oxygen double bond $=0$, oxygen
with single bond $=-1 \quad \mathrm{PCl}_{3} \rightarrow \mathrm{P}=0 \quad \mathrm{Cl}=0$
$\mathrm{O}_{3} \rightarrow$ central $\mathrm{O}=+1$, the oxygen double bond $=0$,
oxygen with single bond $=-1 \quad \mathrm{NO}_{3}^{-} \rightarrow \mathrm{N}=+1$ the oxygen double bond $=0$, oxygen with single bond $=-1$
14. a. BrO_{3}^{-}because expanded the octet allow formal charge to be minimized. F cannot expand the octet. b. PO_{4}^{-3} because expanded the octet allow formal charge to be minimized. N cannot expand the octet.

22 dinitrogen dioxide dinitrogen tetraoxide
24. $\mathrm{H} 2 \mathrm{O} 2 \rightarrow$ single bonds are longer than double bonds $\mathrm{N} 2 \mathrm{H} 2 \rightarrow$ double bonds are longer than triple bonds
26. a. HNO_{2}
28. CH_{4} Tetrahedral vs. trig. planar NH_{3} because of lone pair
30. a. Double bond \rightarrow one sigma and one pi
$32 \mathrm{H}_{2} \mathrm{O}$ (London Dispersion, dipole-dipole, H -bond)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (London Dispersion)
HCl (London Dispersion, dipole-dipole)
NaCl (London Dispersion, Ion-Ion)
34. $\mathrm{C}_{2}-\mathrm{BO}=2,0$ unpaired; $\mathrm{CN}^{-}-\mathrm{BO}=3,0$ unpaired
$\mathrm{N}_{2}-\mathrm{BO}=3,0$ unpaired; $\mathrm{NO}-\mathrm{BO}=2.5,1$ unpaired $\mathrm{F}_{2}-\mathrm{BO}=1,0$ unpaired; $\mathrm{OF}^{-1}-\mathrm{BO}=1,0$ unpaired
9. N and $\mathrm{N} \rightarrow$ covalent N and $\mathrm{Na} \rightarrow$ ionic $\quad \mathrm{Ca}$ and $\mathrm{H} \rightarrow$ ionic
11. $\mathrm{Bi}, \mathrm{Re}, \mathrm{Mn}, \mathrm{In}$
13. Beryllium fluoride sodium carbonate chromium (VI) chloride
15. $\mathrm{ClO}_{3}{ }^{-}=\mathrm{Cl} \quad \mathrm{CO}_{2}=\mathrm{C} \quad \mathrm{CO}_{3}{ }^{2-}=\mathrm{C} \quad \mathrm{PCl}_{3}=\mathrm{P} \quad \mathrm{O}_{3}=$

O $\quad \mathrm{NO}_{3}=\mathrm{N}$
17. $\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}=11$ oxygen has 3 and two oxygens have 2 $\mathrm{CO}_{2} \rightarrow \mathrm{C}=0 \quad \mathrm{O}=2 \quad \mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{C}=0 \quad 2$ oxygens have 3
and one oxygen has $2 \quad \mathrm{PCl}_{3} \rightarrow \mathrm{P}=1 \quad \mathrm{Cl}=3 \quad \mathrm{O}_{3}$
\rightarrow central O has 1 , one outer O has 2 and the other has 3 $\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{N}=0$ two O have 3 , one O has 1
19. $\mathrm{ClO}_{3}^{-}=3 \quad \mathrm{CO}_{2}=1 \quad \mathrm{CO}_{3}^{2-}=3 \quad \mathrm{PCl}_{3}=1 \quad \mathrm{O}_{3}=2 \quad \mathrm{NO}_{3}^{-}$ $=3$
21. $\mathrm{N}_{2} \mathrm{Cl}_{4}$
23. a. O_{2} (double bonds are stronger than single bonds)
b. N_{2} (triple bonds are stronger than double bonds)
25. a. Hydrochloric acid
b. Sulfuric acid
27. $\mathrm{CCl}_{3} \mathrm{~F} \rightarrow \mathrm{C}=\mathrm{sp}^{3}, \mathrm{~F}=\mathrm{sp}^{3} \quad \mathrm{NH}_{3} \rightarrow \mathrm{sp}^{3}$
$\mathrm{Br}_{3}^{-1} \rightarrow$ terminal bromines are sp^{3}, central is $\mathrm{sp}^{3} \mathrm{~d}$
$\mathrm{SF}_{4} \rightarrow \mathrm{sp}^{3} \mathrm{~d}$
$\mathrm{SO}_{3}{ }^{-2} \rightarrow \mathrm{sp}^{3}$
29. BrF_{3} a. Trig. Bipyramidal b. T-shaped c.sp ${ }^{3} \mathrm{~d} \quad \mathrm{Br}_{3}{ }^{-}$
${ }^{1}$ a. Trig. Bipyramidal b. linear c.sp ${ }^{3}$ d
SF_{4} a. Trig. Bipyramidal b. seesaw c.sp ${ }^{3}$ d
SeF_{6} a. Octahedral b. Octahedral c.sp ${ }^{3} \mathrm{~d}^{2}$
SO_{3}^{-2} a. Tetrahedral b. Trig. pyramidal c.sp ${ }^{3}$
31. $\mathrm{CH}_{3} \mathrm{OCH}_{3} \rightarrow$ yes $\mathrm{CBr}_{3} \mathrm{~F} \rightarrow$ yes
33. CF_{4} because it's bigger $=$ stronger LDF
$\mathrm{CBr}_{3} \mathrm{~F}$ because it's polar
NH_{3} because it can H -bond

