Answers to the problems in **RED** need to be submitted through the course website.

Challenging Review Questions. (Bonus: Due 2/6)

The first 8 ionization energies of element "X" are shown below (in aJ). Use this information to answer 1-4.

IE₁	IE2	IE ₃	IE_4	IE₅	IE_6	IE7	IE ₈
1.68	3.17	4.84	8.24	10.42	35.32	42.23	49.60

- 1. How many valence electrons does X have?
- 2. What group does X belong to?
- 3. Which element would be most similar to X? Zinc, Iron, Calcium, Tin, Bismuth, or Bromine?
- 4. Clearly explain why the difference between IE_3 and IE_4 is greater than the difference between IE_2 and IE_3 .
- 5. Determine the wavelength of the photon needed to move an electron from the ground state of a hydrogen atom to the 7th energy level. Report your answer in nm.
- The ionic radius of ⁵⁸Ni²⁺ is 63 pm. Calculate its density in g mL⁻¹. Hint: a similar problem is on the 1st exam.
- Using your understanding of periodic trends, order these elements by increasing density (least dense to most dense).
 O, N. B, F

Ions and Ionic Compounds (Bonus: 2/6)

8. Predict common charge on each of the following. If more than one exist, write them all. If a common charge does not exist, select 0.

	Hydroger	n Strontium	Lead	Aluminum	Fluorine	Selenium	Argon
9.	Classify e	each of the following	as cov	alent or ionic bo	onds:		
N and	N N	and Na	Ca and	Н	Sc and Cl	CI and F	Na and H
10	. Predict th a. N	e ionic compound tl trogen and sodium	nat will f	form between th	ne following:		

- b. Magnesium and Nitrogen
- c. Aluminum and Phosphorus
- d. Selenium and Potassium

11. For each of the following lists, identify all variable charge metals.

- a. Na, Zn, Bi, Re, Mn, In
- b. Ru, Cd, Sn, Zr, K, Al

12. Determine the electron configuration for each of the following. You may use shorthand notation.

Fe ⁺³	Fe ⁺²	In^{+1}	In ⁺³	Cu ⁺¹	Cu ⁺²	Mn ⁺²	Mn+7
13. Na	ame each of the foll	owing:					
	NaH	BeF ₂	(NH ₄) ₂ O	Na ₂ CO ₃	CrCl ₆	Fe ₂ S ₃	
14. De	etermine the molecu	ular formul	a:				
Zii	nc Chloride	Thallium	(I) Phosphate	Thallium (III)	Phosphide	Tin (IV) Oxid	e
	Sodium nitride	Soc	dium nitrite	Sodium nitrate	e Iron (I	II) Selenide	

Molecular Compounds (Bonus: 2/13)

You will need to draw the Lewis Structure for each compound to answer most of these questions

Answer problem 15-19 for each of these compounds.

|--|--|--|

- 15. What is the central atom of the compound?
- 16. How many double bonds are present in the compound?
- 17. How many lone pairs are on each atom?
- 18. What is the formal charge on each atom?
- 19. Does this molecule have resonance forms? If yes, how many resonance forms exist?
- 20. For each pair, determine which molecule is the most stable. Give a brief explanation why you made your selection.
 - a. $BrO_3^- vs. FO_3^-$
 - b. NO4-3 vs. PO4-3
 - c. I₃⁻ vs. F₃⁻
- 21. For each of the following situations, determine the molecular formula for a neutral molecule **made from only nitrogen and chlorine** that contains:
 - a. A single bond between the nitrogen atoms.
 - b. A double bond between the nitrogen atoms.
- 22. Name each of the following compounds.

 N_2O_2 N_2O_4 C_2H_6 SF_6

- 23. For each pair, pick the molecule that has the **strongest** bond between the indicated atoms.
 - a. $O_2 vs H_2O_2$ Compare O-O bonds
 - b. $N_2 vs. N_2H_2$ Compare N-N bonds
 - c. C₂H₆ vs. C₂H₄ Compare C-C bonds

24. For each pair, pick the molecule that has the **longest** bond between the indicated atoms.

- a. O_2 vs H_2O_2
- Compare O-O bonds b. N₂ vs. N₂H₂ Compare N-N bonds
- c. C₂H₆ vs. C₂H₄ **Compare C-C bonds**

25. Name each of the following:

- a. HCI
- b. H_2SO_4
- c. HNO_3
- d. HBrO₂
- e. HBrO₄
- f. HBrO

26. Write the chemical formula for each compound.

- a. Nitrous acid
- b. Sulfurous acid
- c. Carbonic acid
- d. Hydrobromic acid
- e. Acetic acid

Molecular Geometry, Polarity, and Hybridization (Bonus: 2/16)

27. What is the hybridization of each **boldfaced atom** in:

C Cl₃ F	NH ₃	Br₃ ⁻¹	XeF ₄	SF ₄	SeF ₆	S O ₃ -2
-	-	-		-	-	-

28. For each of the following pairs, determine which has smaller bond angles.

- a. CH₂O vs. CH₄ compare H-C-H bond angles
- b. NH₄⁺ vs. NH₃
- compare H-C-H bond angles compare H-N-H bond angles compare O-S-O bond angles **c. SO**₃ **vs. SO**₂
- d. SOF₄ vs. SF₄ compare F-S-F bond angles
- 29. Draw the Lewis structure for each molecule listed below and answer each of following questions about the central atom.
 - a. Determine the electron geometry.
 - b. Determine the molecular geometry.
 - c. Determine the hybridization.

BrF₃	PH₃	Br ₃ -1	XeF₄	SF ₄	SeF ₆	SO3 ⁻²

30. Determine how many sigma bonds and pi bonds are present between the indicated atoms.

C and O a. CH₂O b. HCN C and N

31. Determine if each of the following molecules are polar:

CH₃OCH₃ (C-O-C connectivity) CBr₃F XeF₂ CH₂NH 32. For each of the following molecules, identify ALL intermolecular forces that stabilize condensed phases.

 H_2O $CH_3CH_2CH_2CH_3$ PH_3 HF HCI NaCl

33. For each of the following pairs, determine which has the higher melting temperature.

 $CH_4 \text{ or } CF_4 \text{ or } CBr_3F \qquad PH_3 \text{ or } NH_3 \qquad HF \text{ or } HCI \qquad TeH_2 \text{ or } SeH_2$

34. Use Molecular Orbital (MO) Theory to determine the **bond order and number of unpaired electrons** for each of the following diatomic atoms. Recall that the orbital order changes when Oxygen or Fluorine are involved:

MO order for just carbon and/or nitrogen: σ_{2s} , σ_{2s}^* , π_{2p} , σ_{2p} , π_{2p}^* , σ_{2p}^* MO order when oxygen and/or fluorine are part of the molecule: σ_{2s} , σ_{2s}^* , σ_{2p} , π_{2p} , π_{2p}^* , σ_{2p}^*

\mathbf{U}_2 \mathbf{U}_2 \mathbf{U}_2 \mathbf{U}_2 \mathbf{U}_2 \mathbf{U}_2 \mathbf{U}_2	UF	UF 1
--	----	------

Challenge Questions

Submit your answers to this question **directly to me for bonus points**. You are strongly encouraged to stop by my office with questions.

- 35. It is possible to mathematically predict if a compound will be ionic or covalent using measurable values for several physical properties that we've discussed in class. To a first approximation, this can be accomplished by considering:
 - the amount of energy needed to ionize the cation $X \rightarrow X^+ + e^-$
 - the amount of energy gained when the anion forms $X + e \rightarrow X^-$
 - the charge stabilization gained when the two ions interact $E_p = 231 aJ \cdot pm\left(\frac{q_1q_2}{r}\right)$

Using the data in the table below, determine which of the following ionic compounds forms most favorably. Clearly justify your answer.

NaF, NaCl, NaBr, KF, KCl, or KBr

Atom	Ionization Energy 1 (aJ)	Electron Affinity 1 (aJ)	Ionic Radius (pm)
Sodium	0.823		105
Potassium	0.695		138
Chlorine		0.5795	181
Fluorine		0.5449	113
Bromine		0.5688	196

- 36. The following are descriptions of two different compounds. Your task is to determine the Lewis structure of the compound.
 - a. This monovalent anion (meaning a -1 charge) consists of a neutral central atom from the 4th shell with trigonal pyramidal geometry. It is bonded to two halogens from the 3rd shell and one shell 2 element that carries a -1 formal charge. The central atom has one pi bond.
 - b. This monovalent anion consists of a neutral central atom from the 5th shell with square pyramidal geometry. It is covalently bonded to two different types of atoms from the 2nd shell, none of which carry a permanent formal charge of -1. One pi bond exists in this molecule and two resonance forms can be drawn.

Black Problems:

8. H ⁺¹ or H ⁻¹ Sr ⁺² F ⁻¹ Se ⁻²	9. N and N \rightarrow covalent N and Na \rightarrow ionic Ca and H \rightarrow ionic
	11 Bi Bo Mn In
10. 10310 1013102 12. 103^{3+1} $[Ar] 2d^5$ $[h^{+1}] [Kr] 5c^2/d^{10}$ $(u^{+2}) [Ar] 2d^9$	12. Br, Ne, Min, Mi 12. Porullium fluorido - codium carbonato
$12. Fe^{-1}$ [AI] $5u^{-1}$ III. [N] $55.4u^{-1}$ Cu. [AI] $5u^{-1}$	15. Berymun nuonue sourum carbonate
14. ZnCl ₂ TIP NaNO ₂ NaNO ₃	15. $CIO_3^{-1} = CI CO_2 = C CO_3^{-2} = C PCI_3 = P \qquad O_3 =$
	$O NO_3 = N$
16. $ClO_3^{-} = 2$ $CO_2 = 2$ $CO_3^{2^{-}} = 1$ $PCl_3 = 0$ $O_3 = 1$	17. $ClO_3 \rightarrow Cl = 1$ 1 oxygen has 3 and two oxygens have 2
$NO_{3}^{-} = 1$	$CO_2 \rightarrow C = 0$ $O = 2$ $CO_3^{2-} \rightarrow C = 0$ 2 oxygens have 3
	and one oxygen has 2 $PCl_3 \rightarrow P = 1$ $Cl = 3$ O_3
	\rightarrow central O has 1. one outer O has 2 and the other has 3
	$NO_3 \rightarrow N = 0$ two O have 3, one O has 1
18. $CIO_{2}^{-} \rightarrow CI = 0$ the avygen double band = 0 avygen	$19 \text{ Cl}\Omega_{2}^{-} = 3 \text{ C}\Omega_{2} = 1 \text{ C}\Omega_{2}^{2-} = 3 \text{ PCl}_{2} = 1 \Omega_{2} = 2 \text{ N}\Omega_{2}^{}$
with single head = 1 CO \rightarrow C = 0 O = 0	-2
with single bolid $= -1$ CO ₂ / C = 0 0 = 0	- 5
$CO_3^2 \rightarrow C = 0$ the oxygen double bond = 0, oxygen	
with single bond = -1 $PCI_3 \rightarrow P = 0$ CI = 0	
$O_3 \rightarrow$ central $O = +1$, the oxygen double bond = 0,	
oxygen with single bond = -1 $NO_3^- \rightarrow N = +1$ the	
oxygen double bond = 0, oxygen with single bond = -1	21. N ₂ Cl ₄
20. a. BrO_3^{-} because expanded the octet allow formal	
charge to be minimized. F cannot expand the octet.	
b. PO_4^{-3} because expanded the octet allow formal	
charge to be minimized. N cannot expand the octet	23. a. Ω_2 (double bonds are stronger than single bonds)
	$h_{\rm N_2}$ (triple honds are stronger than double honds)
22 dinitrogen dioxide dinitrogen tetrooxide	b. W ₂ (the bonds are stronger than double bonds)
	25 a Hydrochloric acid
	23. a. Hydrochloric acid
	b. Sulturic acid
24. H2O2 \rightarrow single bonds are longer than double bonds	
N2H2 \rightarrow double bonds are longer than triple bonds	27. $\mathbf{CCl}_{3}\mathbf{F} \rightarrow \mathbf{C} = \mathbf{sp}^{3}, \mathbf{F} = \mathbf{sp}^{3}$ $\mathbf{NH}_{3} \rightarrow \mathbf{sp}^{3}$
	$Br_3^{-1} \rightarrow terminal bromines are sp3, central is sp3d$
26. a. HNO ₂	$SF_4 \rightarrow sp^3 d$ $SO_3^{-2} \rightarrow sp^3$
	29. BrF ₃ a. Trig. Bipyramidal b. T-shaped c.sp ³ d Br ₃ ⁻
28. CH₄ Tetrahedral vs. trig. planar	¹ a. Trig. Bipyramidal b. linear c.sp ³ d
NH ₃ because of lone pair	SF ₄ a. Trig. Bipyramidal b. seesaw c.sp ³ d
	SeF ₆ a. Octahedral b. Octahedral c.sp ³ d ²
	SO_2^{-2} a. Tetrahedral b. Trig. pyramidal c.sp ³
30 a Double bond \rightarrow one sigma and one ni	
	21 CH-OCH \rightarrow voc CBr-E \rightarrow voc
22 H.O. (London Dispersion dinale dinale Liberd)	
$32 \text{ H}_2\text{O}$ (London Dispersion, dipole-dipole, H-bond)	
CH ₃ CH ₂ CH ₂ CH ₃ (London Dispersion)	33. CF4 because it's bigger = stronger LDF
HCI (London Dispersion, dipole-dipole)	CBr ₃ F because it's polar
NaCl (London Dispersion, Ion-Ion)	NH ₃ because it can H-bond
34. C ₂ – BO=2, 0 unpaired; CN ⁻ – BO=3, 0 unpaired	
N ₂ – BO=3, 0 unpaired; NO – BO=2.5, 1 unpaired	
F ₂ – BO=1, 0 unpaired; OF ⁻¹ – BO=1, 0 unpaired	