Answers to the problems in RED need to be submitted through the course website.
Numbers and Units (Bonus Date: January $13^{\text {th }}$)

1. Convert each of the following. Make sure you report the correct number of significant digits:
a. $\quad 1046028 \mathrm{~cm}=$ \qquad km
b. $958378 \mu \mathrm{~g}=$ \qquad Mg
2. How many significant digits are in each number?
a. 14056000
b. 0025
c. 9.04589
3. What is the SI unit for each of the following?
a. Mass
b. Length
c. Density
d. Velocity (or speed limit)
4. Determine the identity of each metal based on its density. You can find common densities here:
a. If a 42.86 mL of water is displaced when 0.1157 kg of a metal is added to a cylinder of water.
b. If a $1.16 \times 10^{4} \mathrm{~nL}$ of water is displaced when $118632 \mu \mathrm{~g}$ of a metal is added to a cylinder of water. Be careful with sig figs on this one.
5. Convert each of the following (use outside resources to find appropriate conversion factors):
a. $\quad 14.59 \mathrm{~g} \mathrm{~mL}^{-1} \rightarrow$ pounds per cubic inch
b. $86.84 \mathrm{~kg} \mathrm{~m}^{-3} \rightarrow$ ounces per cubic foot
6. Using the radius of each atom, calculate the volume in SI units. Make sure to use the correct number of significant digits. $\left(V=\frac{4}{3} \pi r^{3}\right)$
a. Carbon $\rightarrow r=70 \mathrm{pm}$
b. Lead $\rightarrow 1.80 \times 10^{2} \mathrm{pm}$
7. Assuming that an atom is perfectly spherical, determine the radius (in picometers) of each atom
a. Sulfur, which has a volume of $6.5 \times 10^{-25} \mathrm{~mL}$
b. Hydrogen, which has a volume of $6.54 \times 10^{-29} \mathrm{~L}$
8. Write the chemical formula for each molecule. There is not a way to add subscripts online - just put in the appropriate letter and number combinations.
a.

b.

9. Complete the following table:

Name	Element Symbol	Number of Protons	Number of Neutrons	Number of Electrons	Mass Number
Iron-55					
				42	96
a.	${ }^{157} \mathrm{Gd}$	b.	c.	d.	e.

10. Determine the number of electrons in each ion:
a. Cu^{+2}
b. As^{-3}
11. Identify the element:
a. The element that has these three naturally occurring isotopes and determine the average isotopic mass with 6 significant digits:
i. 35.96754522 amu (0.3365% abundant)
ii. 37.9627325 amu (0.0632% abundant)
iii. 39.96238 amu (99.6003% abundant)
b. The element that has these four naturally occurring isotopes and determine the average isotopic mass with 6 significant digits:
i. $\quad 135.907140 \mathrm{amu}$ (0.185% abundant)
ii. $\quad 137.905985 \mathrm{amu}$ (0.215% abundant)
iii. 139.905433 amu (88.450% abundant)
iv. 141.898820 amu (11.150% abundant)
12. Complete the following tables:
a.

Isotope	Exact Mass	Natural Abundance
Silicon-28	27.976927 amu	
Silicon-29	28.9764949 amu	
Silicon-30	29.9737707 amu	3.0872%

b.

Isotope	Exact Mass	Natural Abundance
Boron-10	10.012937 amu	
Boron-12	11.9305 amu	

13. Match each element with another element that is expected to have similar chemical properties:

Element	Magnesium	Phosphorus	Chlorine	Sodium	Carbon	Xenon	Aluminum
Argon							
Strontium							
Boron							
Arsenic							
Francium							
lodine							
Tin							

Energy, Electrons and Periodic Trends (Bonus Date: January 26 ${ }^{\text {th }}$)

For all periodic trend problems, make sure that you can justify your answer. You will be expected to do this on an exam.
14. For each group of atoms, determine which would have a higher $1^{\text {st }}$ Ionization Energy.
a. $\mathrm{Xe}, \mathrm{Kr}, \mathrm{Ar}$
b. $\mathrm{As}, \mathrm{Cl}, \mathrm{Br}$
c. $\mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$
15. Determine the energy (in SI Units) of a photon that has:
a. a frequency of $2.998 \times 10^{4} \mathrm{pHz}$
b. a wavelength of 642 nm
c. a wavelength of $15.631 \mu \mathrm{~m}$
16. Calculate the threshold energy (in Joules) of a metal surface if an electron is ejected travelling at $7.308 \times 10^{5} \mathrm{~m} / \mathrm{s}$ upon irradiation with a wavelength of:
a. 400 nm
b. 580 nm
17. For each of the following sets of atoms, determine which has the smallest radius.
a. P, As, S, or Se?
b. $\mathrm{O}, \mathrm{Cl}, \mathrm{Xe}$, or B
c. $\mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Al}$, or $\mathbf{G a}$
18. Write the full electron configuration for each atom below. When submitting your answer in the Google Form, please format it like this: $1 \mathrm{~s} 22 \mathrm{~s} 22 \mathrm{p} 6 \ldots$. please make sure to put a space between each subshell.

Neon Sodium Argon
19. What orbital would hold the highest energy electron in the ground state for each atom in problem $18 ?$
20. Write the full electron configuration of the first excited state for each atom in problem 18.
21. What orbital would hold the highest energy electron in the first excited state for each atom below:
22. Write the condensed electron configuration for the first excited state of each atom below:
Strontium \quad Ytterbium Barium
23. Write one possible set of quantum numbers for the excited electrons in problem 22. Use this format when entering your answer: $1,1,-1,1 / 2$
24. How many valence electrons do each of the following element have?
$\begin{array}{llll}\text { Nitrogen } & \text { Sulfur } & \text { Zinc } & \text { Gold }\end{array}$
25. List one possible set of quantum numbers for a valence electron for all elements in problem 23. Use this format when entering your answer: 1,1,-1,1/2
26. Arrange each of the following sets of atom by increasing electron affinity.
a. $\mathrm{S}, \mathrm{Cl}, \mathrm{Ar}, \mathrm{K}$
b. O, N, P, F
27. Arrange each of the following sets by increasing radius.
a. $\mathrm{Ne}, \mathrm{N}^{-3}, \mathrm{~F}^{-1}, \mathrm{O}^{-2}$
b. $\mathrm{Ne}, \mathrm{Mg}^{+2}, \mathrm{~K}^{+} \mathrm{Ca}^{+2}$
c. $\mathrm{Ar}, \mathrm{Ca}^{+2}, \mathrm{P}^{-3}, \mathrm{Cl}^{-1}, \mathrm{Na}^{+1}, \mathrm{~S}^{-2}$
28. Calculate the ionization energy of an electron in the indicated shell of a hydrogen atom. Report the value in Joules.
a. $\mathrm{n}=3$
b. $n=6$
29. What is the frequency (in GHz) of the photon needed to drive the ejection of each electron in problem 28 ?
30. What is the wavelength (in nm) of the photon needed to drive the ejection of each electron in problem 28?
31. The Paschen Series occurs in the IR region of the Hydrogen emission spectrum. Determine $n_{\text {initial }}$ for each wavelength.
a. 1282 nm
b. 923 nm
32. Using the image to the right, answer each of the following:
a. What transition would generate the lowest energy photon?

```
\(\longrightarrow \mathrm{A}\)
\(\square\)
```

b. What transition would require the lowest wavelength photon?
33. What orbital corresponds with each set of quantum numbers?
a. $1,0,0,-1 / 2$
b. $4,3,2,1 / 2$
c. $3,1,-1,1 / 2$
34. For each ℓ, determine how many m_{ℓ} are possible.
a. $\ell=3$
b. $\ell=0$
c. $\ell=5$
35. Write a condensed electron configuration for each of the following:
a. Se
b. Bi^{2+}
c. Sn^{-4}

Do you REALLY understand?

Submit your answers to this question directly to me for bonus points. You are strongly encouraged to stop by my office with questions.
36. The "K edge" is a term used by chemists to describe the energy that it takes to excite a 1s electron up to a $4 p$ orbital. It has been experimentally determined that that K edge of copper and its common ions are:

$$
\mathrm{Cu}^{2+}=8979 \mathrm{eV} \quad \mathrm{Cu}^{+}=8984 \mathrm{eV} \quad \mathrm{Cu}=8987 \mathrm{eV}
$$

a. Show the electron configuration and orbital diagram for the excited Cu^{+}ion.
b. An eV (electron volt) is a unit of energy. If 1 eV is $1.602 \times 10^{-16} \mathrm{~mJ}$, determine
i. the wavelength of the photon that is absorbed at the K edge for each of the Cu samples above.
ii. the region of the light spectrum (e.g. Visible, UV, etc.) that these photons belong to.
c. Sometimes, excited molecules can lose energy as heat. When this happens, the photon that is absorbed to create the excited state is not the same energy as the photon that gets emitted when the sample relaxes back to ground state. Determine the percentage of energy lost by an excited Cu^{+}if the photon that is emitted has a wavelength of 410 pm .
d. Using what you've learned about periodic trends and electronic structures of atoms/ions, justify the trend in K edge energies.

Answers to black problems:

1a 10.46028 km	2a 5 s.f. 2b 2 s.f.
$3 \mathrm{~kg}, \mathrm{~m}, \mathrm{~kg} / \mathrm{m}^{3}$ (or $\mathrm{kg} \mathrm{m}^{-3}$)	4. Density $=2.70 \mathrm{~g} \mathrm{~mL}^{-1}$ Aluminum
5. 0.527 pounds per in ${ }^{3}$	6. $1.4 \times 10^{-30} \mathrm{~m}^{3}$
7. 54 pm (or 53 depending on how you round)	8. $\mathrm{NO}_{3} \mathrm{H}_{2}$
9. Iron- $55,{ }^{55} \mathrm{Fe}, 26$ protons, 29 neutrons, 26 electrons, A=55	9. Molybdenum- $96,{ }^{96} \mathrm{Mo}, 42$ protons, 54 neutrons, 42 electrons, $A=96$
10. 27 electrons	11. Argon (39.9477 amu)
12. ${ }^{28} \mathrm{Si}=92.21 \%{ }^{29} \mathrm{Si}=4.7 \%$	13. Argon - Xenon Strontium - Magnesium
14.a. Ar b. Cl	15. a. $1.99 \times 10^{-41} \mathrm{~J} \quad$ b. $3.09 \times 10^{-19} \mathrm{~J}$
16. $\phi=2.5310^{-19} \mathrm{~J}$	17. a. sulfur b. oxygen
18. Ne: $1 s^{2} 2 s^{2} 2 p^{6} \mathrm{Na}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$	19. $\mathrm{Ne}-2 \mathrm{p} \mathrm{Na}-3 \mathrm{~s}$

20. $\mathrm{Ne}: 1 s^{2} 2 s^{2} 2 p^{5} 3 s^{1}$	$\mathrm{Na}: 1 s^{2} 2 s^{2} 2 p^{6} 3 p^{1}$	21. Sr-4d Yb: 5d
22. Sr : $[\mathrm{Kr}] 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{1}$	Ba: $[\mathrm{Xe}] 6 \mathrm{~s}^{1} 4 \mathrm{f}^{1}$	23. Sr: $4,2,\{-2,-1,0,1,2\},\{-1 / 2,1 / 2\}$ (one from each bracket is possible (e.g. $4,2,0,1 / 2$ is a correct answer) Ba: $4,3,\{-3,-2,-1,0,1,2,3\},\{-1 / 2,1 / 2\}$
24. $\mathrm{N} \rightarrow 5 \mathrm{Zn} \rightarrow 2$	$\mathrm{Am} \rightarrow 2$	$\begin{aligned} & \text { 25. } N: 2,0,0,\{1 / 2,-1 / 2\} \text { or } 2,1,\{-1,0,1\}\{1 / 2,-1 / 2\} \\ & \text { Zn: } 4,0,0,\{1 / 2,-1 / 2\} \quad \text { Am: } 7,0,0,\{1 / 2,-1 / 2\} \end{aligned}$
26. $\mathrm{Ar}<\mathrm{K}<\mathrm{S}<\mathrm{Cl}$		27. a $\mathrm{Ne}<\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-} \quad$ b. $\mathrm{Mg}^{2+}<\mathrm{Ne}<\mathrm{Ca}^{2+}<\mathrm{K}^{+}$
28. $2.42 \times 10^{-19} \mathrm{~J}$		29. a. $3.65 \times 10^{5} \mathrm{GHz}$
30. a. 821 nm		31. $\mathrm{n}=5$
32. $A \rightarrow B$		33. a. 1 s b. 4 f
34. a 7 b. 1		35. a. [Ar] $4 s^{2} 3 d^{10} 4 p^{4} \quad$ b. $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 p^{1}$

