Thermodynamics. These problems are mostly from your textbook. More can be found in chapter 14 and 23.

- 1. Define the First and Second Laws of Thermodynamics in words and with an equation. Discuss how they are related to our understanding on ΔH , ΔS , and ΔG .
- 2. Standard molar entropy (S°) can be used to calculate reaction entropies. These values are always positive (S° > 0). Why? T 70, so there Is heat. head "distribution" is a form of Entropy
- 3. (23-6) For each pair, predict which molecule will have a higher molar entropy:

CO vs. CO_2 by $H_2O(s)$ vs. $H_2O(l)$ S < l < g $CH_4(g)$ at 25 °C vs. $CH_4(g)$ at 250 °C S in creases with T

4. For each reaction, select the correct answer for ΔH , ΔS , and ΔG .

5. (23.23) Using the information below, calculate the ΔG at 37°C when [ATP] = 5.0 mM, [ADP] = 0.50 mM, and [HPO₄²⁻] = 5.0 mM. Is the reaction spontaneous under these conditions?

ATP (aq) + H₂O (I) \rightleftharpoons ADP (aq) + HPO₄²⁻ ΔG° = -30.5 kJ mol⁻¹

6. (14.19) Calculate ΔH° for CH₃CH₂OH (I) \rightleftharpoons CH₃OCH₃ (I) noting that:

$$CH_{3}CH_{2}OH (I) + 3 O_{2}(g) \rightleftharpoons 2 CO_{2}(g) + 3 H_{2}O (g) \qquad \Delta H^{\circ} = -1234.8 \text{ kJ mol}^{-1}$$

$$CH_{3}OCH_{3}(I) + 3 O_{2}(g) \rightleftharpoons 2 CO_{2}(g) + 3 H_{2}O(g)$$

 Metal
 Tm (K)
 ΔH_{fus} (kJ mol⁻¹)

 Li
 454
 2.99

 Na
 371
 2.60

 $\Lambda H^{\circ} = -1309.1 \text{ kJ mol}^{-1}$

- 7. (23-67) From the following data, calculate ΔS_{fus} for each metal
- 8. (23.72) From the data below, calculate ΔG° and K for the following reaction at 25°C.

Ag⁺	(aq)	+ Cl ⁻	$(aq) \rightleftharpoons AgCl(s)$)

	Ag⁺ (ag)	Cl ⁻ (aq)	AgCI(s)
ΔG_f^0 (kJ mol ⁻¹)	77.1	-131.2	-109.8
S° (J mol ⁻¹ K ⁻¹)	72.7	56.5	96.3

- 9. For the reaction in problem 8, determine ΔS° and ΔH° .
- 10. Using the information you determined in problems 8 and 9, determine K, ΔG° , ΔH° , and ΔS° for the following reactions:

$$3 \text{ Ag}^+(\text{aq}) + 3 \text{ Cl}^-(\text{aq}) \rightleftharpoons 3 \text{ AgCl}(s)$$

$$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag}^{+}(\operatorname{aq}) + \operatorname{Cl}^{-}(\operatorname{aq})$$

(7) (2) phase drange temps, $\Delta G = 0$ $\Delta S_{FS}^{*} = \frac{\Delta H_{FS}^{*}}{T_{M}}$ $\Delta S_{FS}^{*} = \frac{\Delta H_{FS}^{*}}{T_{M}}$ $\Delta S = \frac{\Delta H}{T_{M}}$ $\Delta S = \frac{\Delta H}{T_{M}}$ $\Delta S = \frac{\Delta H}{T_{M}}$ $\Delta S = \frac{\Delta H}{T_{M}}$ $\Delta S = \frac{\Delta H}{T_{M}}$

(10)

$$A_{3}^{+} + C_{1}^{-} = A_{3}C_{1}C_{3} \qquad \Delta C_{5}^{-} = -55.7 \qquad \Delta H \qquad \Delta S \\ J_{K3} \qquad J_{K3} \qquad$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\Delta H^{\circ} = \Delta G^{\circ} + T\Delta S^{\circ}$$

$$\Delta H^{\circ} = -SS700J + 298.15 K (32.9T) = -65.569J = -65.5KT$$

$$MUT = -65.5KT$$

$$MUT = -65.5KT$$

$$MUT = -65.5KT$$

9
$$A_{g}^{+} + C_{1}^{-} = A_{g}C_{1}C_{3}$$

 $S^{2}(5)$ 72.7 So.5 96.3
 $M^{-1}K$
 $\Delta S^{0} = 96.5 - [72.7 + 50.5] = -32.95$
 $M^{-1}K$

$$AG^{\circ} = -8.7 \text{ K} = -8.7 \text{ K} = -55.7 \text$$

(FT)
$$\Delta G_{f}^{2} + CI^{-} = A_{g}CI_{(S)}$$

(FT) $\Delta G_{f}^{2} = 77.1 - 131.2 - 105.5$
 $\Delta G_{f}^{0} = -105.5 \text{ FT} - [77.1 \text{ FT} + -131.2 \text{ FT}]$
 $M_{H}^{0} = -105.5 \text{ FT} - [77.1 \text{ FT} + -131.2 \text{ FT}]$

Ast + CIT = Asci (S)	<u>A</u> G	AH.	AS
reverse (x-1)	5x-1	1-X 1	PK
Age (s) E Agt + CIT	26=55.7 FT	0 H = 65.5 KJ	05=32.9T
	noi	met	md.k
K=[1.74×10-10]-1=5	5.74 Kw ⁹		