Thermodynamics

1. Consider the following reaction at equilibrium. For each of the following, determine if the equilibrium will shift toward products or reactants or if there will be no change.

 $Zn(s) + CO_2(g) \rightleftharpoons ZnO(s) + CO(g)$ $\Delta H_{rxn}^0 = -100 \ kJ \ mol^{-1}$ $K_p = 600$

- a. The temperature is increased in a flask that was at equilibrium.
- b. ZnO (s) is added to the reaction chamber.
- c. Carbon monoxide is added to the chamber.
- 2. For each change listed in Problem 2, determine if $\Delta G_{rxn} > 0$, $\Delta G_{rxn} < 0$, or $\Delta G_{rxn} = 0$.

For problems 3-8, refer to this reaction:

$$H_2O_2(I) \rightleftharpoons H_2O(I) + O_2(g)$$

- 3. Use the table of bond enthalpies below, (Table 14.5 in your textbook) predict if the following reaction is enthalpically favorable. Note that the reaction is not necessarily balanced.
- 4. Is the equilibrium constant is larger at 100 K or 250 K? Clearly justify your answer.
- 5. Without doing any math, determine if $\Delta S_{rxn} > 0$ or $\Delta S_{rxn} < 0$.
- 6. Using Appendix D in your book, calculate $\Delta H_{rxn}^o, \Delta S_{rxn}^o, \Delta G_{rxn}^o$.
- 7. The density of H_2O_2 is 1.443 g/mL. If 50 mL of H_2O_2 is allowed to decompose, determine ΔH . Assume 100% yield
- 8. Calculate K at 25 °C.
- 9. For the reaction below, calculate ΔG_{rxn} when the indicated concentrations are mixed together at 75 °C. Report you answer in kJ mol⁻¹.

 $PCI_{3}(g) + CI_{2}(g) \rightleftharpoons PCI_{5}(g)$

```
[Cl_2] = 0.5 \text{ M} [PCl_3] = 0.1 \text{ M} [PCl_5] = 0.1 \text{ M}
```

10. Consider the evaporation of CH_2Cl_2 .

- a. Without doing any math, predict the sign of ΔH . Does this contribute to or oppose spontaneity?
- b. Without doing any math, predict the sign of ΔS . Does this contribute to or oppose spontaneity?
- c. Using the information in Table 23.1, determine the boiling temperature. Note that this is when the products and reactants are in equilibrium (Q = K and $\Delta G = 0$).

Thermodynamics Equations

$$\Delta G = \Delta H - T \Delta S$$

$$ln\frac{K_2}{K_1} = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad \qquad R = 8.314 \frac{J}{mol \, K}$$

TABLE 14.5 Average molar bond enthalpies

Bond	Molar bond enthalpy, $H_{\text{bond}}/\text{kJ}\cdot\text{mol}^{-1}$	Bond	$\frac{Molar bond enthalpy}{H_{bond}/kJ \cdot mol^{-1}}$	
О-Н	464	C≡N	890	
0-0	142	N–H	390	
С-О	351	N–N	159	
O=O	502	N=N	418	
C=O	730	N≡N	945	
C–C	347	F-F	155	
C=C	615	Cl-Cl	243	
C≡C	811	Br–Br	192	
С–Н	414	H–H	435	
C–F	439	H–F	565	
C–Cl	331	H–Cl	431	
C–Br	276	H–Br	368	
C–N	293	H–S	364	
C=N	615			

Copyright 2011 University Science Books.

Substance	S°∕ J·K ⁻¹ ·mol ⁻¹	∆H°₅∕ kJ∙mol⁻¹	∆G°ٍ/ kJ∙mol⁻¹	Substance	S°∕ J·K ^{−1} ·mol ^{−1}	$\Delta H_{\rm f}^{\circ}/{ m kJ\cdot mol^{-1}}$	∆G°₅/ kJ∙mol⁻¹
Ag(s)	42.6	0	0	$H_2O_2(l)$	109.6	-187.8	-120.4
$\operatorname{AgCl}(s)$	96.3	-127.0	-109.8	$H_2S(g)$	205.8	-20.6	-33.4
C(s, diamond)	2.4	1.9	2.9	N(g)	153.3	472.7	455.5
C(s, graphite)	5.7	0	0	$N_2(g)$	191.6	0	0
$\operatorname{CH}_4(g)$	186.3	-74.6	-50.5	$\mathrm{NH}_3(g)$	192.8	-45.9	-16.4
$\mathrm{C}_{2}\mathrm{H}_{2}(g)$	200.9	227.4	209.9	$\mathrm{N}_{2}\mathrm{H}_{4}(l)$	121.2	50.6	149.3
$C_2H_4(g)$	219.3	52.4	68.4	NO(g)	210.8	91.3	87.6
$\mathrm{C_6H_6}(l)$	173.4	49.1	124.5	$\mathrm{NO}_2(g)$	240.1	33.2	51.3
$CH_{3}OH(l)$	126.8	-239.2	-166.6	$N_2O(g)$	220.0	81.6	103.7
$CH_3Cl(g)$	234.6	-81.9	-58.4	$\mathrm{N}_2\mathrm{O}_4(g)$	304.4	11.1	99.8
$\mathrm{CH}_{3}\mathrm{Cl}(l)$	145.3	-102	-51.5	$N_2O_5(s)$	178.2	-43.1	113.9
$\mathrm{CH}_2\mathrm{Cl}_2(g)$	270.2	-95.4	-68.8	Na(g)	153.7	107.5	77.0
$\mathrm{CH}_{2}\mathrm{Cl}_{2}(l)$	177.8	-124.2	-70.0	Na(s)	51.3	0	0
$\operatorname{CHCl}_3(g)$	295.7	-102.7	6.0	O(g)	161.1	249.2	231.7
$\operatorname{CHCl}_3(l)$	201.7	-134.1	-73.7	$\mathrm{O}_2(g)$	205.2	0	0
$\mathrm{CO}(g)$	197.7	-110.5	-137.2	P(s, white)	41.1	0	0
$\mathrm{CO}_2(g)$	213.8	-393.5	-394.4	P(s, red)	22.8	-17.6	-12.1
$\operatorname{Cl}(g)$	165.2	121.3	105.3	$\mathrm{PCl}_{3}(g)$	311.8	-287.0	-267.8
$\operatorname{Cl}_2(g)$	223.1	0	0	$\mathrm{PCl}_5(g)$	364.6	-374.9	-305.0
H(g)	114.7	218.0	203.3	S(s, rhombic)	28.5	0	0
$H_2(g)$	130.7	0	0	S(s, monoclinic)	32.6	0.3	0.1
$H_2O(g)$	188.8	-241.8	-228.6	$\mathrm{SO}_2(g)$	248.2	-296.8	-300.1
$\mathrm{H_{2}O}(l)$	70.0	-285.8	-237.1	$SO_3(g)$	256.8	-395.7	-371.1

TABLE 23.1 Standard molar entropies (S°), enthalpies of formation (ΔH_f°) , and Gibbs energies of formation (ΔG_f°) of various substances at 25°C and one bar (see also Appendix D)^{*}

*Most data from CRC Handbook of Chemistry and Physics, 87th Online Edition, 2006–2007.

Copyright 2011 University Science Books.

- () a) The reaction is Nothermic (aHLO), so heat is a product. Increasing the temperature will increase (Products) - so the reaction will shift to reactants
 - 5) Zno is a solid. Solids don't influence the equilibrian. No change
 - C) CO is a product. Reactants will from
- 2. AG= = if no change AG LO if products form AG TO if reactants form
 - a) △G7Ø b) △G7Ø c) △G7Ø

3)
$$2H_2O_2(e) = 2H_2O(e) + O_2(g)$$

H-O-O-H H-O-H O=O

H-0-0-H H-0-H 0=0

Band to break: H-0 × 4 -> 4(464 FS/md) = 1856 F5/md 0-0 × 2 -> 2(142 F5/md) = 284 K3/md TotAL Enderthormine = KS0+284= 2140 F5 M-1

Burk to make? 4 x O-H -> 4 (-464 KJ/m) = -1850 KJ/mul 0=0 -> - SD2 KJ/mul

Total exothermic = -1856+ -502 = -2358 # T/mu

(4) Since AH is elothermic, hect is a product. This means that M will Ath-product conservently, more reactions will be made and K will decrease.

()
$$2 H_{202}(0) = 2H_{20}(0) + 02 Cg$$

KS/mul $\Delta H_{5}^{\circ} -167.8 -285.8 0$
KJ/mul $\Delta G_{5}^{\circ} -120.4 -237.1 0$
J/mul.k $5^{\circ} 109.6 76 205.2$

$$\Delta H = \left[2 \left(-285.8 \right) + 0 \right] - 2 \left(-187.8 \right) = -196 \text{ KJ/mol}$$

$$\Delta G = \left[2 \left(-237.1 \right) + \varphi \right] - 2 \left(-120.4 \right) = -233.4 \text{ KJ/mol}$$

$$\Delta S = \left[2 (70) + 205.2 \right] - 2 \left(109.6 \right) = 219.2 \text{ J}$$

$$M \cdot k$$

(9)
$$PCI_3(g + Ch_1) = PCI_{STG}$$

 $Q = CR(IS)$
 $CRCI_3)LCh_3 = 0.1$
 $CRCI_3)LCh_3 = 2$
 $Q < K$, so too many reactants
 $-products$ will burn
 $- \Delta G$ should be regative (spontenews)
 $\Delta G = \Delta G^{\circ} + RT \ln Q$
 $\Delta G^{\circ} = -8.314 T (27245 K + 75) \ln 11 Kio^{5}$
 $\Delta G^{\circ} = -33600T + 8.314 (273.15+75) \ln 2$
 $\Delta G^{\circ} = -33600 T Md$

T= 311,7 K = 38,54°C

(1)