1. Consider the following reactions. Determine the order of the reaction and write the simplest rate law possible (e.g. 3^{rd} order would be rate=k[A]³) (a. rate = k[A] b. rate = k)

Reaction	k 1
A	1136 s ⁻¹
В	83822 M s ⁻¹

2. For the reaction below, use the method of initial rates to determine the rate constant and rate law. Make sure to use the correct units. (rate = $0.5 \text{ M}^{-1}\text{s}^{-1}[\text{NO}_2]^2$)

Experiment	[NO ₂] (M)	[CO] (M)	Rate (M s ⁻¹)
1	0.15	0.15	0.011
2	0.30	0.15	0.045
3	0.60	0.30	0.18
4	0.60	0.60	0.18

 $CO(g) + NO_2(g) \rightarrow NO(g) + CO_2(g)$

- 3. For the reaction in problem 2, determine the **rate of the reaction** when the concentration of each reactant is 0.25 M. (0.03125 M/s)
- 4. Consider the following data.

$C_2H_4O(g) \rightarrow CH_4(g) + CO(g)$		
Time (sec)	[C₂H₄O] (mM)	
10	76.0	
50	46.5	
72	35.5	
93	27.4	
130	17.4	

a. Determine the rate law (including the rate constant with correct units) rate = $0.0123s^{-1}[C_2H_4O]$)

- b. Determine the reactant concentration after 25 seconds has passed. (63.23 mM)
- c. Determine the initial concentration of C_2H_4O (86 mM)
- d. Determine the initial rate of the reaction. (1.0578 M/s)
- e. The concentration of all reactants and products after 85 seconds have passed. $([C_2H_4O] = 30.22 \text{ mM} \quad [CO] = 55.75 \text{ mM}] \quad [CH_4] = 55.75 \text{ mM})$
- 5. Consider the synthesis of $C_2H_4O_2$ from solid carbon, oxygen gas (O_2), and hydrogen gas (H_2). Using the information below, determine the initial concentration of H_2 (210 mM)

 $[C_2H_4O_2] = 100 \text{ mM}$ and $[H_2] = 10 \text{ mM}$ after 10 minutes.

Concept Questions:

- 1. What is activation energy and how can it be decreased?
- 2. What are 3 ways to change the rate of a reaction?
- 3. Draw a reaction coordinate and label it with all important energy levels. How does this help us explain reaction rates?
- 4. Consider two reactions with identical rate constants one of these reactions is 1st order and the other is 2nd order. Explain why the rate of the 2nd order reaction will decrease more quickly than the rate of the 1st order reaction.

1. a)
$$k \equiv s^{-1} < 1^{st}$$
 order units rate = k CAD

2.
$$rate = k [No_2]^{2} [col^{k}]$$

i) $rate = k (0.17)^{6} (0.17)^{5}$
 $rate = k (0.5)^{6} (0.17)^{5}$
 $rate = k (0.5)^{6} (0.17)^{5}$
 $rate = 0.5^{6}$
 $rate = 0.5^{6}$

$$b) \quad |n CA3 = -k + ln CA3_{o}$$

$$ln CA3 = -0.0123 = -1(25 = 5) + ln 86$$

$$ln CA3 = 4.147$$

$$CA3 = 63.23 \text{ mM}$$

c) from the graph,
$$4=-0.0123 \times + 4.454$$

T T T T
INCAS k t INCASO
INCAS k t INCASO
INCAS = 4.454
(His is done using inverse in on
CASO = 85.97 mM your calculator)
d) rate = 0.0123 s⁻¹ (85.97 mM) = 1.057 mM
s

e. Use choose reference!

$$C(2HyOJ_0 = 85.97 \text{ mM} \quad (@ t=0)$$

$$C(2HyOJ_0 = 85.97 \text{ mM} \quad (@ t=0)$$

$$C(2HyOJ_0 = 7) = 10 \text{ CAJ} = -0.003 (85) + 4.454$$

$$\ln CAJ = 30.12 \text{ mM}$$

$$Cale = -\Delta C(2HyO) = \Delta C(CHyD) = \Delta C(CO)$$

$$Cale = -30.22 - 85.97 = -0.6559 \text{ mM}$$

$$COJ_0 = 0 \quad (b/c a product)$$

$$COJ_{85} = 7$$

$$0.6559 = \frac{X-0}{85-0} = 55.75 \text{ mM}$$

$$CCH_{4}D_{85} = X$$
 $0.6559 = \frac{X-0}{85} = \frac{55.75 \text{ mM}}{85}$

5.
$$2C_{CS} + O_{2}C_{3}+2H_{2}C_{3} \rightarrow C_{2}H_{4}O_{2}$$

 $fate = \Delta \frac{C_{2}H_{4}O_{2}}{\Delta t} = -\frac{1}{2} \frac{\Delta CH_{2}}{\Delta t}$
 $fate = \frac{100 - 0 \text{ mM}}{10 - 0 \text{ min}} = 10 \text{ mM}$
min

$$10 \text{ mM} = -\frac{1}{2} \frac{10 - x}{10 - 0} = 210 \text{ mM}$$

 The energy barrier that a reaction Must overcome for reactants to be converted to products.
 - adding a catalyst will decrease the Ea

Charge the concentration add a catalyst charge the Temperature

