1. Consider the following reactions. Determine the order of the reaction and write the simplest rate law possible (e.g. $3^{\text {rd }}$ order would be rate $\left.=k[A]^{3}\right) \quad(a$. rate $=k[A] \quad$ b. rate $=k)$

Reaction	$\mathbf{k}_{\mathbf{1}}$
A	$1136 \mathrm{~s}^{-1}$
B	$83822 \mathrm{M} \mathrm{s}^{-1}$

2. For the reaction below, use the method of initial rates to determine the rate constant and rate law. Make sure to use the correct units. (rate $\left.=0.5 \mathrm{M}^{-1} \mathrm{~s}^{-1}\left[\mathrm{NO}_{2}\right]^{2}\right)$

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Experiment	$\left[\mathbf{N O}_{\mathbf{2}}\right](\mathbf{M})$	[CO] (M)	Rate $\left(\mathbf{M ~ s}{ }^{\mathbf{- 1}}\right)$
$\mathbf{1}$	0.15	0.15	0.011
$\mathbf{2}$	0.30	0.15	0.045
$\mathbf{3}$	0.60	0.30	0.18
$\mathbf{4}$	0.60	0.60	0.18

3. For the reaction in problem 2, determine the rate of the reaction when the concentration of each reactant is 0.25 M . ($0.03125 \mathrm{M} / \mathrm{s}$)
4. Consider the following data.

$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$	
Time (sec)	$\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right](\mathrm{mM})$
10	76.0
50	46.5
72	35.5
93	27.4
130	17.4

a. Determine the rate law (including the rate constant with correct units) rate $=0.0123 \mathrm{~s}^{-1}\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right]$)

b. Determine the reactant concentration after 25 seconds has passed. (63.23 mM)
c. Determine the initial concentration of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(86 \mathrm{mM})$
d. Determine the initial rate of the reaction. ($1.0578 \mathrm{M} / \mathrm{s}$)
e. The concentration of all reactants and products after 85 seconds have passed.

$$
\left.\left(\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right]=30.22 \mathrm{mM} \quad[\mathrm{CO}]=55.75 \mathrm{mM}\right] \quad\left[\mathrm{CH}_{4}\right]=55.75 \mathrm{mM}\right)
$$

5. Consider the synthesis of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ from solid carbon, oxygen gas $\left(\mathrm{O}_{2}\right)$, and hydrogen gas $\left(\mathrm{H}_{2}\right)$. Using the information below, determine the initial concentration of $\mathrm{H}_{2} \quad(210 \mathrm{mM})$

$$
\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right]=100 \mathrm{mM} \text { and }\left[\mathrm{H}_{2}\right]=10 \mathrm{mM} \text { after } 10 \text { minutes. }
$$

Concept Questions:

1. What is activation energy and how can it be decreased?
2. What are 3 ways to change the rate of a reaction?
3. Draw a reaction coordinate and label it with all important energy levels. How does this help us explain reaction rates?
4. Consider two reactions with identical rate constants - one of these reactions is $1^{\text {st }}$ order and the other is $2^{\text {nd }}$ order. Explain why the rate of the $2^{\text {nd }}$ order reaction will decrease more quickly than the rate of the $1^{\text {st }}$ order reaction.

$$
\text { 1.a) } h \equiv s^{-1}<1 \pm \text { order units rate }=k[A]
$$

b) $k \equiv M s^{-1}<o^{t}$ ord rate $=k$
2. $\quad a k=k\left[\mathrm{NO}_{2}\right)^{a}\left(\mathrm{CO}^{b}\right.$

$$
\begin{aligned}
& \text { 1) } \frac{0.011}{0.045}=\frac{k(0.15)^{a}(0.15)^{b}}{k(0.3)^{a}(0.15)^{b}} \quad \text { 2) } \frac{0.18}{0.18}=\frac{k}{k} \cdot(0.6)^{a}(0.6)^{a} \cdot \frac{(0.3)^{b}}{(0.6)^{b}} \\
& 0.244=0.5^{a} \\
& \ln 0.244=a \ln 0.5 \\
& a=2 \\
& 1=0.5^{b} \\
& \ln \mid=b \ln 0.5 \\
& b=\varnothing \\
& 0.04 \Gamma \frac{M}{s}=k(0.3)^{2}(0.15)^{0} \quad k=0.5 \quad \mathrm{~m}^{-1} \mathrm{~s}^{-1} \\
& \text { rate }=0.5 \mathrm{M}^{-1} \mathrm{~s}^{-1}\left(\mathrm{NO}_{2}\right)^{2}
\end{aligned}
$$

3. rate $=0.5 \mathrm{M}^{-1} \mathrm{~S}^{-1}\left(0.25 \mathrm{M}^{2}=0.03125 \mathrm{M}^{-1}\right.$
4. a) plot ot InA vs. t is linear $\left(r^{2}=1\right)$ slope $=-0.0123$

$$
\text { 1ST order } k=0.0123 \mathrm{~s}^{-1} \quad \text { rate }=0.0123 \mathrm{~s}^{-1}\left[\mathrm{C}_{2} H_{4} \mathrm{O}\right]
$$

b)

$$
\begin{aligned}
\ln [A] & =-k t+\ln [A]_{0} \\
\ln [A] & =-0.01235^{-1}(255)+\ln 86 \\
\ln (A] & =4.147 \\
C A] & =63.23 \mathrm{mM}
\end{aligned}
$$

c) from the graph, $y=-0.0123 x+4.454$

$$
\uparrow_{\ln [A]}^{y=-0.0123 x+4.454} \prod_{k}^{T} \prod_{\ln (A) 0}
$$

$$
\begin{aligned}
\ln [A]_{0} & =4.454 \\
{[A]_{0} } & =85.97 \mathrm{mM}
\end{aligned}
$$

(this in done using inverse In on your calculator)
d) rate $=0.0123 \mathrm{~s}^{-1}(85.97 \mathrm{mM})=1.057 \frac{\mathrm{mM}}{\mathrm{s}}$
e. Use average ref approach!

$$
\begin{aligned}
& {\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right]_{0}=85.97 \mathrm{mM} \quad(0 t=\varphi)} \\
& {\left[C_{2} \mathrm{H}_{4} \mathrm{O}\right]_{85}=? \rightarrow \ln [A]=-0.0123(85)+4.451} \\
& \ln [A]=3.4085 \\
& (A)=30.22 \mathrm{mM} \\
& \text { rate }=\frac{-\Delta\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right]}{\Delta t}=\frac{\Delta\left[\left(\mathrm{H}_{4}\right]\right.}{\Delta t}=\frac{\Delta[\mathrm{CO}]}{\Delta t} \\
& \text { rate }=-\frac{30.22-85.97}{85-0}=0.6559 \frac{\mathrm{mM}}{\mathrm{~s}} \\
& {\left[(0)_{0}=0\right. \text { (bic product) }} \\
& (\mathrm{CO})_{85}=\text { ? } \\
& 0.6559=\frac{x-0}{85-0}=55.75 \mathrm{mM} \\
& {\left[\mathrm{CH}_{4}\right]_{0}=0} \\
& \left(\mathrm{CH}_{4}\right)_{85}=x \\
& 0.659=\frac{x-0}{85}=55.75 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } 2 \mathrm{C}(s)+\mathrm{O}_{2}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \\
& \text { rate }= \frac{\Delta\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right]}{\Delta t}=\frac{-1}{2} \frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t} \\
& \text { rate }=\frac{100-0 \mathrm{mM}}{10-0 \mathrm{~min}}=\frac{10 \mathrm{mM}}{\mathrm{~min}} \\
& 10 \frac{\mathrm{mM}}{\mathrm{~min}}=\frac{-1}{2} \frac{10-x}{10-0}=210 \mathrm{mM}
\end{aligned}
$$

(1) The energy barrier that a reaction Must overcome for reactants to bo converted do products.

- adding a catalyst will decrease to E.
(2) Change h concentration
add a catalyst
change th Temperature
(3)

(4) $1^{\text {st }}$ rate $=k(A)^{\prime}$
$2^{n d}$ rate $=k(A)^{2} \leftarrow$ more dependut on changing concertoutia beers 2 VS. I

