Equilibrium. These problems are from your textbook. More can be found in chapter 19.

1. (19.5) Write the equilibrium-constant expression (Kc) for each of the following reactions.
a. $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
2. (19.11) Phosgene, $\mathrm{COCl}_{2}(\mathrm{~g})$, a toxic gas used in the synthesis of a variety of organic compounds, decomposes according to

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

A sample of phosgene gas at an initial concentration of 0.500 M is heated at $527^{\circ} \mathrm{C}$ in a reaction vessel. At equilibrium, the concentration of $\mathrm{CO}(\mathrm{g})$ was found to be 0.046 M . Calculate the equilibrium constant for the reaction at $527^{\circ} \mathrm{C}$.
3. (19.14) Nitrogen dioxide decomposes at high temperatures according to the equation:

$$
2 \quad \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Suppose initially we have pure $\mathrm{NO}_{2}(\mathrm{~g})$ at 1000 K and 0.500 atm . If the total pressure is 0.732 atm when equilibrium is reached, what is the value of Kp (make sure to include the correct units)?
4. (19.17) Given that $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]=0.85 \mathrm{M}$ at equilibrium for the reaction below, calculate the concentration of $\mathrm{CO}(\mathrm{g})$ at equilibrium.

$$
\mathrm{Ni}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g}) \quad \mathrm{Kc}=5.0 \times 10^{4} \mathrm{M}^{-3}
$$

5. (19.24) Sodium bicarbonate decomposes according to the equation below. Given that $\mathrm{Kp}=0.26 \mathrm{~atm}^{2}$ at $125^{\circ} \mathrm{C}$, calculate the partial pressures of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at equilibrium when $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is heated to $125^{\circ} \mathrm{C}$ in a closed vessel.

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

6. (19.25) For the reaction below, calculate the equilibrium concentrations of $\mathrm{ICI}(\mathrm{g}), \mathrm{I}_{2}(\mathrm{~g})$, and $\mathrm{Cl}_{2}(\mathrm{~g})$ when 0.65 moles of $\mathrm{I}_{2}(\mathrm{~g})$ and 0.33 moles of $\mathrm{Cl}_{2}(\mathrm{~g})$ are mixed in a 1.5 liter reaction vessel.

$$
2 \mathrm{ICl}(\mathrm{~g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{Kc}=0.11
$$

7. (19.37) Consider the chemical equilibrium described below. Predict the way in which the equilibrium will shift in response to each of the following changes.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})
$$

a. Decrease in the pressure of H_{2}
b. Increase in the pressure of CH_{4}
c. Adding C (s) to the flask
d. The volume is decreased
8. (19.50) If $0.20 \mathrm{~atm} \mathrm{H}_{2}$ and $3.0 \mathrm{~atm} \mathrm{CH}_{4}(\mathrm{~g})$ are mixed in the presence of 4 grams of carbon at $500^{\circ} \mathrm{C}$, determine if the reaction is at equilibrium. If it is not, determine if products or reactants will be formed.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g}) \quad \mathrm{Kp}=2.69 \times 10^{3} \mathrm{~atm}^{-1}\left(\text { at } 500^{\circ} \mathrm{C}\right)
$$

(1) $K_{c}=\frac{\left(\mathrm{SO}_{2}\right)\left[\mathrm{Cl}_{2}\right]}{\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}$

$$
K_{C}=\frac{\left[\mathrm{O}_{2}\right]}{\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)^{2}}
$$

(2)
$3.2 \mathrm{NO}_{2}(g) \geqslant 2 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

I	0.5 ar	\varnothing	\varnothing
C	$-2 x$	$+2 x$	+1
E	$0.5-2 x$	$2 x$	x

$$
P_{\mathrm{NO} 2}=0.5-2(0.232)=0.036 \mathrm{~atm}
$$

$$
P_{N O}=2(0.232)=0.464 \mathrm{a} / \mathrm{m}
$$

$$
P_{02}=0.232 \mathrm{atr}
$$

$$
\begin{gathered}
P_{\text {TOT }}=P_{\text {NOL }}+P_{N O}+T_{O 2} \\
0.732=0.5-2 x+2 x+x \\
0.732=0.5+x \\
x=0.232 \\
K_{P}=\frac{(0.464 \mathrm{atn})^{2}(0.232 \mathrm{~atm})}{(0.036 \mathrm{ata}) 2}=38.54 \mathrm{~atm}^{2}
\end{gathered}
$$

4. $K_{c}=\frac{\left.C \mathrm{Ci}_{\mathrm{i}}(\mathrm{CO})_{4}\right]}{[\operatorname{Co})^{4}} \quad 5 \times 10^{-1} M^{-3}=\frac{0.85 M}{\left[(0)^{4}\right.}$

$$
\begin{aligned}
& {\left[(0)^{4}=1.75 \times 10^{-5} \mathrm{M}^{4}\right.} \\
& C(0)=0.0642 \mathrm{M}
\end{aligned}
$$

5. $2 \mathrm{NaH}\left(\mathrm{O},(\mathrm{s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{C}\right)+\mathrm{CO}_{2}(y)+\mathrm{H} \mathrm{O}(\mathrm{y}) \quad \mathrm{K}_{p}=0.26 \mathrm{~atm}^{2}$

I	0	0
c	$+x$	$t x$
E	x	x

$$
\begin{array}{r}
0.26 \mathrm{~atm}^{2}=x^{2} \\
x=0.51 \mathrm{~atm}
\end{array}
$$

$$
\begin{aligned}
& P_{\mathrm{CO} 2}=0.51 \mathrm{~atm} \\
& P_{\mathrm{H} 2 \mathrm{O}}=0.51 \mathrm{atn}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{COCl}_{2} \rightleftharpoons \mathrm{CO}+\mathrm{Cl}_{2} \\
& \text { I } 0.5 \mathrm{M} \quad \varnothing \quad \varnothing \\
& K_{c}=\frac{(\operatorname{co})\left[\mathrm{cl}_{2}\right]}{\left(\operatorname{coc} 1_{2}\right)}=\frac{(0.046 \mathrm{M})(0.046 \mathrm{M})}{0.4 \mathrm{MM}} \\
& \subset-x+x+x \\
& E \text { 0.5-x } x \\
& K_{c}=0.00466 M \\
& x=0.046 \mathrm{M} \\
& {[C O]=0.046} \\
& {\left[C l_{2}\right]=0.046 M} \\
& {[\operatorname{coc}(2)=0.5-0.046=0.454 \mathrm{~m}}
\end{aligned}
$$

6

$$
\begin{array}{lll}
2 I C l(y) \geq I_{2}(g)+C I_{2}(y) & \left(I_{2}\right)=\frac{0.65 \mathrm{~mol}}{1.5 L}=0.433 \mathrm{M} \\
\pm \varnothing & 0.4(33 & 0.22 \mathrm{M} \\
C+2 x & -x-x & (C l 2)=\frac{0.33 \mathrm{md}}{1.5 L}=0.22 \mathrm{M} \\
E 2 x & 0.433-6 & 0.27-y
\end{array}
$$

$$
\begin{gathered}
0.11=\frac{(0.433-x)(0.22-x)}{(2 x)^{2}}=\frac{0.09520-0.653 x+x^{2}}{4 x^{2}} \quad 0.441^{2}=0.0952-0.653 x+x^{2} \\
\varnothing=0.56 x^{2}-0.653 x+0.09563
\end{gathered}
$$

$$
\begin{aligned}
& a=0.56 \\
& b=-0.653 \\
& c=0.09563 \\
& \left(I_{2}\right)=0.433-0.1717=0.2613 \mathrm{M} \\
& \left(a_{2}\right)=0.22-8.1717=0.0483 \mathrm{M} \\
& {[I(1)=24=2(0.1717)=0.3434 \mathrm{M}}
\end{aligned}
$$

$$
x=0.1717
$$

$$
x=0.9943
$$

not possible becas. $\left[I_{2}\right]$
would be negative!

7 a. b anount reartant \rightarrow more reactand fom
b. T podrt \rightarrow more reentorts form
c. No change! solids ane not pert ot thequilibrin
d. More mole of gas in te reactorh A dacresse in volum equats to an inoem in pressume ot gass (Bryle; Lan). Preactab goer up more that Pprodets

SOO ... reed to mak ma prodets
8. $Q=\frac{P_{C t_{1}}}{P_{\mathrm{H}_{2}}{ }^{2}}=\frac{3 \mathrm{~atm}}{(0.2 \mathrm{~atm})^{2}}=75 \mathrm{~atm}^{-1}$
$K>Q \quad$ not at aquil, briun

