
Thermodynamics.

1. For each reaction, select the correct answer for ΔH , ΔS , and ΔG .

Λ(/ -> S	ΔS > 0	ΔS < 0	01 - 1 1 - 51	∆S > 0	ΔS < 0
	ΔH > 0	ΔH < 0	AS Smoleans -> 1	ΔH > 0	ΔH < 0
H2O2(I) ≠ H2O2(S) OH -> Strengtlening	∆G > 0	∆G < 0	$C(s) + 4 H(g) \rightleftharpoons CH_4(g)$	∆G > 0	∆G < 0
Imf	Temperature Dependent		CH -> contris	Temperature Dependent	

2. For each of the following reactions in problem 1, identify which graph most accurately reflects the relationship between ΔG and T_Ω(.

- 3. For melting reaction, $\Delta G = 0$ at the melting temperature (Tm).

 a. Write out an equilibrium showing the melting of Li (s).
 - b. Why can't we write an equilibrium constant for this reaction? Salidy + Rissil on not indulal
 - c. Which of the graphs in problem 2 is most likely to represent the DG vs. T relationship for this melting reaction?
 - d. At the melting temperature, is it more favorable to make solids or liquids? Why?

- f. Use the equation that you developed in 3e to calculate the entropy of melting for lithium and sodium. The melting temperature and melting enthalpy are given below.

$$\Delta S = \Delta K = 2990 \text{ JmJ}$$

$$\Delta S = \Delta K = 2990 \text{ Metal}$$

$$\Delta S = 454 \qquad 2.99$$

$$\Delta S = 4.59 \text{ JmJ}$$

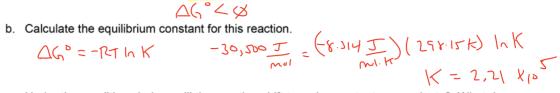
$$\Delta S = 454 \qquad 2.99$$

$$\Delta S = 4.59 \text{ JmJ}$$

$$\Delta S = 454 \qquad 2.60$$

g. Do the signs of ΔH and ΔS make sense based on your understanding of the reaction?

4. ATP hydrolysis is a very important reaction in biological systems. Consider the information given


ATP (aq) +
$$H_2O$$
 (I) \rightleftharpoons ADP (aq) + HPO_4^{2-} (aq)

$$\Delta G^{\circ} = -30.5 \text{ kJ mol}^{-1}$$

a. Does this reaction consume or produce energy? How do you know?

$$\Delta G^{\circ} \angle \varnothing$$

$$\Delta G^{\circ} = -RT \ln K$$

c. Under the conditions below, will the reaction shift to make reactants or products? What do you predict the sign of ΔG to be?

[ATP] = 5.0 mM, [ADP] = 0.50 mM, and [HPO₄²⁻] = 5.0 mM

TP] = 5.0 mM, [ADP] = 0.50 mM, and [HPO
$$4^2$$
-] = 5.0 mM
$$Q = \left(\frac{ADP D C HPO 4D}{CATPD} = 0.005\right) \left(0.5\right) = 0.5$$

$$Q < K Products
form$$

d. For the conditions above, calculate ΔG at 37°C.

5. Calculate ΔH° for CH₃CH₂OH (I) ⇒CH₃OCH₃ (I) noting that:

 $CH_3CH_2OH(I) + 3.0_2(g) \Rightarrow 2.CO_2(g) + 3.H_2O(g)$

 $\Delta H^{\circ} = -1234.8 \text{ kJ mol}^{-1}$

(cH3OCH3(1) + 3 O2(g) = 2 CO2(g) + 3 H2O(g) AH° = -1309.1 kJ mol-1 2 COT(g) + 2H2O(g) > CH3O CH3(R) + 302(g) AH= (309.1 KJ/ml

6. From the data below, calculate ΔG° and K for the following reaction at 25°C.

 $Ag^+(aq) + Cl^-(aq) \rightleftharpoons AgCl(s)$

	Ag⁺ (ag)	Cl ⁻ (aq)	AgCl(s)
ΔG_f^0 (kJ mol ⁻¹)	77.1	-131.2	-109.8
S° (J mol ⁻¹ K ⁻¹)	72.7	56.5	96.3

7. What do you think the sign of ΔH and ΔS will be for the reaction in problem 6? Explain your choice.

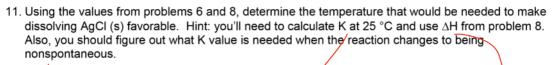
$$\Delta H \angle o - Creeting an ionic bond 8.$$
 For the reaction in problem 6, determine ΔS° and ΔH° .

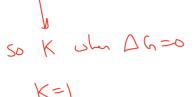
For the reaction in problem 6, determine
$$\Delta S^{\circ}$$
 and ΔH° .
$$\Delta S^{\circ} = 96.3 - \left[72.7 + 56.5\right] = -32.9 \text{ The model}$$

9. Using the information you determined in problems 6 and 7, determine K, ΔG° , ΔH° , and ΔS° for the

-
$$\Delta K^{\prime} = 55.7 KJ/ml$$

- $\Delta H^{\circ} = 65.4 KJ/ml$
- $\Delta S^{\circ} = 32.9 J/m.K$
 $K^{\prime} = 1.7440^{-1}$


$$3 \text{ Ag}^+(\text{aq}) + 3 \text{ Cl}^-(\text{aq}) \Rightarrow 3 \text{ AgCl}(\text{s}) \rightarrow 3 \text{ Cl}^-(\text{s}) = - \text{ lb} \text{ lb} \text{ lb}$$


9. Using the information you determined in problems 6 and 7, determine
$$\mathbf{K}$$
, $\Delta \mathbf{G}^*$, $\Delta \mathbf{H}^*$, and $\Delta \mathbf{S}^*$ for the following reactions:

$$-\Delta \zeta^* = 55.7 \text{ KJ/ml}$$

$$-\Delta t^* = 55.4 \text{ KJ/ml}$$

10. From what you learned in problem 6, explain why our solubility rules predict that AgCl is not soluble.

T1 = 2021 K