Thermodynamics.

1. For each reaction, select the correct answer for ΔH , ΔS , and ΔG .

H2O2 (I) ≓ H2O2 (S)	ΔS > 0	∆S < 0	$C(s) + 4 H(g) \rightleftharpoons CH_4(g)$	$\Delta S > 0$	∆S < 0
	ΔH > 0	∆H < 0		$\Delta H > 0$	∆H < 0
	∆G > 0	∆G < 0		$\Delta G > 0$	∆G < 0
	Temperature Dependent			Temperature Dependent	

2. For each of the following reactions in problem 1, identify which graph most accurately reflects the relationship between ΔG and T.

- 3. For melting reaction, $\Delta G = 0$ at the melting temperature (Tm).
 - a. Write out an equilibrium showing the melting of Li (s).
 - b. Why can't we write an equilibrium constant for this reaction?
 - c. Which of the graphs in problem 2 is most likely to represent the DG vs. T relationship for this melting reaction?
 - d. At the melting temperature, is it more favorable to make solids or liquids? Why?
 - e. With this in mind, rearrange $\Delta G = \Delta H T\Delta S$ to show the relationship between ΔH and ΔS at the melting temperature (Tm).
 - f. Use the equation that you developed in 3e to calculate the entropy of melting for lithium and sodium. The melting temperature and melting enthalpy are given below.

Metal	Tm (K)	∆H _{fus} (kJ mol ⁻¹)
Li	454	2.99
Na	371	2.60

g. Do the signs of ΔH and ΔS make sense based on your understanding of the reaction?

4. ATP hydrolysis is a very important reaction in biological systems. Consider the information given below. **This reaction is balanced.**

ATP (aq) + H₂O (I) \rightleftharpoons ADP (aq) + HPO₄²⁻ (aq) $\Delta G^{\circ} = -30.5 \text{ kJ mol}^{-1}$

- a. Does this reaction consume or produce energy? How do you know?
- b. Calculate the equilibrium constant for this reaction.
- c. Under the conditions below, will the reaction shift to make reactants or products? What do you predict the sign of ΔG to be?

 $[ATP] = 5.0 \text{ mM}, [ADP] = 0.50 \text{ mM}, \text{ and } [HPO_4^{2-}] = 5.0 \text{ mM}$

d. For the conditions above, calculate ΔG at 37°C.

5. Calculate ΔH° for CH₃CH₂OH (I) \rightleftharpoons CH₃OCH₃ (I) noting that:

CH₃CH₂OH (I) + 3 O₂ (g) \rightleftharpoons 2 CO₂ (g) + 3 H₂O (g) △H° = -1234.8 kJ mol⁻¹ CH₃OCH₃ (I) + 3 O₂ (g) \rightleftharpoons 2 CO₂ (g) + 3 H₂O (g) △H° = -1309.1 kJ mol⁻¹ 6. From the data below, calculate ΔG° and K for the following reaction at 25°C.

 $Ag^+(aq) + Cl^-(aq) \rightleftharpoons AgCl(s)$

	Ag⁺ (ag)	Cl⁻ (aq)	AgCl(s)
ΔG_f^0 (kJ mol ⁻¹)	77.1	-131.2	-109.8
S° (J mol ⁻¹ K ⁻¹)	72.7	56.5	96.3

- 7. What do you think the sign of ΔH and ΔS will be for the reaction in problem 6? Explain your choice.
- 8. For the reaction in problem 6, determine ΔS° and ΔH° .

9. Using the information you determined in problems 6 and 7, determine K, ΔG° , ΔH° , and ΔS° for the following reactions:

 $3 \text{ Ag}^+(\text{aq}) + 3 \text{ Cl}^-(\text{aq}) \rightleftharpoons 3 \text{ AgCl}(s)$

 $AgCl(s) \rightleftharpoons Ag^+(aq) + Cl^-(aq)$

10. From what you learned in problem 6, explain why our solubility rules predict that AgCl is not soluble.

11. Using the values from problems 6 and 8, determine the temperature that would be needed to make dissolving AgCl (s) favorable. Hint: you'll need to calculate K at 25 °C and use ∆H from problem 8. Also, you should figure out what K value is needed when the reaction changes to being nonspontaneous.