- 1. Balance these following reactions:
 - a. NaMnO₄ (s) \rightarrow Mn₂O₇ (s) + Na₂O (s)
 - b. $Fe_2(CO_3)_3$ (aq) + NaOH (aq) \rightarrow FeO(OH) (s) + Na₂CO₃ (aq) + H₂O (l)
 - c. Aqueous sodium sulfate reacts with solid copper (I) bromide in a double displacement reaction.
 - d. The combustion of $C_9H_{15}O$.
- 2. How many nitrogen atoms are in 42.86 moles?
- 3. Explain why 1 mole of CO_2 has a different mass than 1 moles of carbon monoxide.
- 4. What is the mass of $1.86 \times 10^{20} \text{ CO}_2$ molecules?
- 5. Elemental analysis determines that a sample of NaMnO₄ contains 90.1853 grams of oxygen. What is the mass of the sample?
- 6. Consider the synthesis of water from H₂ and O₂ (2 H₂ (g) + O₂ (g) \rightarrow 2 H₂O (I).
 - a. If you start with 5 grams of H_2 and 50 grams of O_2 , how much water will be formed (assume 100% yield)?
 - b. How much of each reactant is left over when the reaction completes?
 - c. Determine the mass of water produced if this reaction proceeds with a 73.86 % yield.

Quinine was the first effective "Western" treatment for malaria. It was first used in the 17th century and remained in use until the 1940s when other effective drugs were discovered that have fewer unpleasant side effects.

- Elemental analysis of quinine indicates that is 74.03% carbon, 7.471% hydrogen, 8.636% nitrogen, and 9.863 % oxygen (these are all mass percent values) and has a molecular weight of 324.46 g mol⁻¹. Determine the molecular formula of quinine.
- 8. Combustion of quinine yields the toxic by-product NO₂ (g).
 - a. Determine the mass of NO₂ produced if 100 grams of quinine is combusted in excess oxygen.
 - b. How much of each reactant is needed to produce 250 grams of water?
 - c. If 250 grams of CO₂ is produced when 250 grams of each reactant are combined, determine the % yield.
 - d. Determine the mass of **all compounds** left in a flask after the combustion of 25 grams of quinine in 50 grams of oxygen.

① a.
$$2Na MnOy(S) \rightarrow Mn_2O_7(S) + Na_2O(S)$$

b. $Fe_2(CO_3)_3(q_2) + 6 NaOH(q_2) \rightarrow 2 FeO(OH)(S) + 3Na_2CO_3(q_2) + 2H_2O(q)$
C. $Na_2SO_4(a_2) + 2C_0Br(S) \rightarrow C_{U_2}SO_4(S) + 2NaBr(q_2)$
d. $4C_9H_{15}O + 49O_2(q_2) \rightarrow 36CO_2 + 30H_2O$

- 3 CO2 contains more atoms than CO. For this reason, I mole of CO2 has more mass than one mol of CO
- (4) 1.86 × 10²⁰ molecules 1 mol 44.01 g = 1.359 × 10⁻² g

(b) Hz is Limiting Reactant, so NONE left

$$O_2$$
: so g @ beginning. How much used to make 44.6 g HzO?
 $44.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 132 g
 $144.6 g$ HzO/ 1md 1 1 mel 02 1 mel 02

7. Assome loog total -> this way mass % = mass

Empirical Formula CioHi2NO

M.F.W. =
$$324.46$$
 $\frac{324.46}{162.23} = 2$ $\frac{M.F.}{C_{20}H_{24}N_2O_2}$

a) Excers O2 ... so quinine is L.R.