Molecular Shape and Polarity

AX ₂	AX ₃	AX ₄	AX ₅	AX ₆
Linear	Trigonal Planar	Tetrahedral	Trigonal	Octahedral
			Bipyramidal	
180°	120°	109.5°	120°, 90°, 180°	90°
х — А — х			$\begin{array}{c} x \\ x $	

1. The parent geometry of each shape group is shown above. Use these as a reference point to draw and name each of the following.

Electron Groups	Name	Sketch the Shape in 3D
AX2E		
AX3E		
AX2E2		
AX₄E		

AX ₃ E ₂	
AX ₂ E ₃	
AX₅E	
AX4E2	

- 2. How do you know if a bond is polar?
- 3. Determine if a covalent bond between each pair of atoms is polar or non-polar:

S and O	O and H	O and F	N and O	C and H	N and Cl
---------	---------	---------	---------	---------	----------

- 4. Covalent bonds that include fluorine, oxygen, and nitrogen are almost always polar.
 - a. Why is this a true statement? Consider electronegativity values.
 - b. What is one example of a polar bond that contains fluorine?
 - c. What is one example of a non-polar bond that contains fluorine?

- 5. True or false. For each false statement, explain why it is not true.
 - a. A polar molecule must contain at least one polar bond.
 - b. All molecules that contain a polar bond are polar.
- 6. Consider the following compounds:
 - a. Label all polar bonds with a dipole arrow (+--+) pointing toward the negative pole.
 - b. Determine if each of these compounds are polar or non-polar. They are drawn with the correct geometry.

7. Rank these four intermolecular forces from weakest to strongest:

H-bond	ion-ion	London dispersion forces	dipole-dipole
--------	---------	--------------------------	---------------

8. Consider the following compounds: Circle the compounds that can interact through dipole-dipole and put a box around those that can H-bond.

9. For each of the compounds below, determine the molecular geometry and list all intermolecular forces that help stabilize condensed phases.

Compound	Structure (draw it in in the correct geometry)	Molecular Geometry for EACH central atom	Circle all appropriate IMF
CO ₂			lon-ion Dipole-dipole H-bond LDF
CH₃CI			lon-ion Dipole-dipole H-bond LDF
CH3CH3			lon-ion Dipole-dipole H-bond LDF
CH3CO2H			lon-ion Dipole-dipole H-bond LDF
CH ₃ NH ₂			lon-ion Dipole-dipole H-bond LDF
H ₂ S			lon-ion Dipole-dipole H-bond LDF
ICl ₃			lon-ion Dipole-dipole H-bond LDF
SiF4			lon-ion Dipole-dipole H-bond LDF