Equilibrium.

1. Write the equilibrium-constant expression (Kc) for each of the following reactions.
a. $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
2. Consider the chemical equilibrium described below. Predict the way in which the equilibrium will shift in response to each of the following changes.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})
$$

a. Decrease in the pressure of H_{2}
b. Increase in the pressure of CH_{4}
c. Adding C (s) to the flask
d. The volume is decreased
3. Sodium bicarbonate decomposes according to the equation below. Given that $\mathrm{Kp}=0.26 \mathrm{~atm}^{2}$ at $125^{\circ} \mathrm{C}$, calculate the partial pressures of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at equilibrium when $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is heated to $125^{\circ} \mathrm{C}$ in a closed vessel. $\left(\mathrm{CO}_{2}=0.51 \mathrm{~atm} \quad \mathrm{H}_{2} \mathrm{O}=0.51 \mathrm{~atm}\right)$

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

 the reaction is at equilibrium. If it is not, determine if products or reactants will be formed. (Products form)

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g}) \quad \mathrm{Kp}=2.69 \times 10^{3} \mathrm{~atm}^{-1}\left(\text { at } 500^{\circ} \mathrm{C}\right)
$$

5. Given that $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]=0.85 \mathrm{M}$ at equilibrium for the reaction below, calculate the concentration of $\mathrm{CO}(\mathrm{g})$ at equilibrium. $([C O]=0.0642 \mathrm{M})$

$$
\mathrm{Ni}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g}) \quad \mathrm{Kc}=5.0 \times 10^{4} \mathrm{M}^{-3}
$$

6. Phosgene, $\mathrm{COCl}_{2}(\mathrm{~g})$, a toxic gas used in the synthesis of a variety of organic compounds, decomposes according to

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

A sample of phosgene gas at an initial concentration of 0.500 M is heated at $527^{\circ} \mathrm{C}$ in a reaction vessel. At equilibrium, the concentration of $\mathrm{CO}(\mathrm{g})$ was found to be 0.046 M . Calculate the equilibrium constant for the reaction at $527^{\circ} \mathrm{C} .(\mathrm{Kc}=0.00466 \mathrm{M})$
7. Nitrogen dioxide decomposes at high temperatures according to the equation:

$$
2 \quad \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Suppose initially we have pure $\mathrm{NO}_{2}(\mathrm{~g})$ at 1000 K and 0.500 atm . If the total pressure is 0.732 atm when equilibrium is reached, what is the value of Kp (make sure to include the correct units)? (38.54 atm)
8. For the reaction below, calculate the equilibrium concentrations of $\mathrm{ICl}(\mathrm{g}), \mathrm{I}_{2}(\mathrm{~g})$, and $\mathrm{Cl}_{2}(\mathrm{~g})$ when 0.65 moles of $\mathrm{ICl}(\mathrm{g})$ is to a 1.5 liter reaction vessel. ($\left.\mathrm{I}_{2}=0.0875 \mathrm{M} \mathrm{Cl}_{2}=0.0875 \mathrm{M} \quad \mathrm{ICI}=0.258 \mathrm{M}\right)$

$$
2 \mathrm{ICl}(\mathrm{~g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{Kc}=0.11
$$

