Buffers and Titrations

1. What is the maximum and minimum pH that can be buffered by each of the following buffers?

Chloroacetic acid - chloroacetate
carbonic acid - bicarbonate
2. For each of the following, determine which form of the buffer (HA or A^{-}) will be present at higher concentration.

Buffer $\mathrm{pKa}=5.75 \quad$ Solution $\mathrm{pH}=4.5 \quad$ Buffer $\mathrm{pKa}=3.75 \quad$ Solution $\mathrm{pH}=4.5$
3. Calculate the pH of a 500 mL solution that is:
$0.15 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $0.25 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$.
1.6 M fluoride and 1.1 M hydrofluoric acid
4. Calculate the [weak acid] and [weak base] in a solution of hypochlorite and hypochlorous acid buffered at pH 7.0 The total buffer concentration is 50 mM .
Hint: You have two variable and 2 equations - total concentration and Henderson-Hasselbach. Use both and make a substitution.
5. What mass of sodium acetate needs to be added to 500 mL of 1.00 M acetic acid to create a buffer at pH 5.3?
6. Calculate the resulting pH when 10 mL of 0.5 M NaOH is added to a 1.8 L solution of 50 mM hypochlorite buffered at a pH of 7.0
Hint: Note the volume changes in this reaction. Be very careful with moles, volume, and Molarity.

