Below, you see two titration curves of 10 M NaOH into 1 L of 50 mM acid. For each of the curves, answer these questions:

1. Is the acid strong or weak?
2. If this is a weak acid, what is the pKa?
3. Determine each of the following:
a. Initial pH
b. pH at the $1 / 2$ equivalence point
c. pH at the equivalence point

A common buffer used in biochemistry experiments is called "This" and it has a pKa of 8.1. Answer each of the following questions about this buffer.
4. What is the maximum and minimum pH that can be buffered by This?

5. Which form of the buffer (A - or HA) is present at higher concentration at pH 8.6 ?

$$
p H>p K a \quad \text { so mane basic more } A^{-}
$$

6. Consider a 500 mL solution that contains 50 mM This acid (HA) and 25 mM This base (A-)
a. What is the pH of this solution?

$$
p H=8.1+\log \frac{25 \mathrm{mM}}{50 \mathrm{mM}}=7.8
$$

b. Calculate the pH if 2.5 mL of 1.6 M HCl is added.

$$
0.0025 \mathrm{~L} \mid 1.6 \mathrm{~mol}, 0.004 \mathrm{~mol} \mathrm{HCl}
$$

$$
\begin{array}{cl}
A^{-}+\mathrm{HCl} \rightarrow & \mathrm{HA}+\mathrm{Cl}^{-} \\
I 0.01250 .004 & 0.025 \\
C-0.004-0.004 & +0.004 \\
E=0.0085 \varnothing & 0.029
\end{array}
$$

$$
p H=8.1+\log \frac{0.0085}{0.079}=7.567
$$

7. In lab, you find a 250 mL solution of 50 mM Tris base (the basic form of This; call is A - if it helps you) and a 1 M solution of nitric acid. How can you make a This buffer at pH 7.5 ? Be specific - tell me exactly what volume of nitric acid that you need to add to the This base solution.

$$
\begin{aligned}
& \text { Here's what y going to happen: } \\
& \text { ours goal is to figure out how } \\
& \text { many mols of } \mathrm{HNO}_{3}(x) \text { to add }
\end{aligned}
$$

$7.5=8.1+\log \frac{A^{-}}{H A}$

$$
\begin{aligned}
A & =0.25111 A \\
I-\lambda & =0.251 x \\
0.0125-x & =0.251 x \\
0.0125 & =0.25(x+x \\
0.0125 & =(1+0.251) x
\end{aligned}
$$

$$
\text { To make this buffer, add } \sim 10 \mathrm{~mL} \text { of } 1 \mathrm{M} \mathrm{HNO}_{3}
$$

$$
x=\left.0.00999 \mathrm{~mol} \mathrm{HNO}_{3}\right|_{1 \mathrm{~mol}} ^{\mathrm{L}}=0.00999 \mathrm{LHNO}
$$

Strong Acid
3a. 50 mM Strong Acid $\rightarrow 50 \mathrm{mM} \mathrm{H} \mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{PH}=-\log 0.05=1.3$
Bb. Moles Acid: $\quad \frac{1 L \mid}{0.05 \mathrm{mul}} L=0.05 \mathrm{~mol}$

$$
\begin{aligned}
& 1 / 2 \text { es. Pt. } \quad 0.05\left(\frac{1}{2}\right) \text { moles } \mathrm{OH}^{-} \text {added }=0.025 \mathrm{~mol} \mathrm{OH} \\
& 0.025 \text { moles acid left } \\
& \left.0.025 \mathrm{~mol}\right|_{10 \mathrm{~mol}} \mathrm{~L}=0.0025 \mathrm{~L} \\
& \left(H_{30}{ }^{t}\right)=\frac{0.025 \mathrm{~mol}}{1.0025 \mathrm{~L}}=0.02494 \\
& p H=-\log 0.02494=1.60
\end{aligned}
$$

3C. Strong Acid/strong base titration $\quad \mathrm{PH}=7$

Weak acid

$$
\text { 3a. } \begin{array}{rlrl}
{[H A]=} & 50 \mathrm{mM} \quad \mathrm{pKa}=10^{-6} & H A+H_{20} \rightleftharpoons A \\
10^{-6}=\frac{x^{2}}{0.05-x} & I 0.05 \\
0= & x^{2}+10^{-6} x-5 \times 10^{-8} & & C 0.05-x \\
& \cdots \text { quadratic } \ldots \\
x= & 2.23 \times 10^{-4} \quad & p H=-\log 2.23 \times 10^{-4}=3.65
\end{array}
$$

3b. $1 / 2 E_{q} P_{t} \quad P H=P K a=l$

3C. Eq. Pl. (5 mL NaOH added) $\quad \mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$ I $0.0 \mathrm{rml}_{\mathrm{ml}}^{\mathrm{m}} 0.0 \mathrm{rmal}_{\mathrm{ml}} \varnothing \varnothing$ $C-0.05 \quad-0.05 \quad+0.05$ $\frac{0.05 \mathrm{~mol}}{1.005 \mathrm{~L}} \mathrm{~A}^{- \text {created (weak acid) }}$ $E \varnothing \quad \varnothing \quad 0.05 \mathrm{~mol}$

$$
\begin{aligned}
& \text { POH }=-\log 2.23 \times 10^{-5}=4.65 \\
& 10^{-8}=\frac{x^{2}}{0.0498} \quad X=\left[\mathrm{OH}^{-}\right]=2.23 \times 10^{-5} \mathrm{M} \\
& P H=14-P O H=9.34
\end{aligned}
$$

