Acids and Bases

For each of the following salts, predict if a 100 mM solution would be acidic, basic, or neutral.

$$
\mathrm{NaCl} \quad \mathrm{KNO}_{2} \quad \text { sodium acetate } \quad \text { sodium hydrogen sulfate }
$$

Strategy: Break the salt into ions. Is the cation an acid or base? How about the anion? $\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{+} . \mathrm{Na}^{+}$is not a proton donor or acceptor. Cl^{-}is the conjugate base of a strong acid, so it is NOT a base. Neutral.

For each pair, identify which will be a more acidic solution:
10 mM HCl or $10 \mathrm{mM} \mathrm{HF} \quad 10 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$ or $10 \mathrm{mM} \mathrm{HCl} \quad 10 \mathrm{mM} \mathrm{HNO}_{2}$ or $20 \mu \mathrm{M} \mathrm{HNO} 2$
Strategy: You need to consider all variables that can influence the amount of $\mathrm{H}_{3} \mathrm{O}^{+}$that is produced: concentration, acid strength, monoprotic vs. diprotic. HCl vs. HF. Equal concentration of monoprotic acids. HCl is a strong acid and HF is a weak acid. HCl will be more acidic.

Order the following solutions by increasing acidity (lowest pH goes last). A table of pKa is attached.
$100 \mathrm{mM} \mathrm{HF}, \quad 100 \mathrm{mM} \mathrm{HClO}, \quad 100 \mathrm{mM} \mathrm{HSO}_{4}^{-1}, \quad 100 \mathrm{mM} \mathrm{NH}_{4}{ }^{+}$
$\mathrm{HCO}_{3}{ }^{-1}$ can be an acid or a base. If you have a 100 mM NaHCO 3 solution, will it be acidic or basic? Hint: Compare the Ka and Kb values. Is this molecule a stronger acid or base?

Hypochlorous acid (HClO) has a pKa of 7.53 . What is the Ka ? What is the conjugate base? What are the pKb and Kb of the conjugate base?

Calculate the pH of each of the following solutions:
$650 \mu \mathrm{M} \mathrm{HCl}$

6.5 nM HF

$1 \mathrm{mM} \mathrm{Mg}(\mathrm{OH})_{2}$

650 mM MgF 2

For each of the following acids, determine what concentration is needed to have a pH of 5.5 . Please answer in micromolar.

Hydrochloric acid

Ammonium chloride

