The Solar System

- You are here
- Sol - the Solar System' s Star
- The Planets

Inner planets
Outer planets
Pluto and Charon

15,000,000,000 Light Years (hypothetical)

1,000,000,000 Light Years (partially mapped)

* At least 80 galaxy superclusters mapped
* Estimated 33,000,000 galaxies (3 million large galaxies)
* Estimated 500,000,000,000,000,000 (500 million billion) stars

5,000,000 Light Years (Local Group)

* Estimated 3 large galaxies (36 small galaxies)
* Estimated 500,000,000,000 (500 billion) stars

500,000 Light Years (Milky Way Galaxy and friends)

* 1 large galaxy (9 small galaxies)
* Estimated 200,000,000,000 (200 billion) stars

50,000 Light Years (Milky Way Galaxy)

5,000 Light Years (Milky Way Galaxy)

The Local Neighborhood

All stars within 13 light years (4 parsecs) of the Earth's Sun. There are only 25 other stars, many of which are dim red dwarfs that can not be seen from Earth with the naked eye.

Earth's Solar System

Sol

Sol - The Solar System's Star 98\% of the Solar System's Mass

Hydrogen - 92.1\%
Helium - 7.8\%
also contains oxygen, carbon, nitrogen, neon, iron, silicon, magnesium, sulfur and trace amounts of elements

Sol is a main sequence star. The energy it releases is produced by hydrogen fusion in the star's core.

Sol - The Solar System's Star

Sol in visible light. The Earth's Sun is a yellow star that is subject to dark splotches called sunspots. The spots are cooler $\left(\sim 2,000^{\circ} \mathrm{C}\right.$ cooler!) than the surrounding bright areas and are areas of active, intense magnetism.

Sol - The Solar System's Star

Electromagnetic Radiation

Sol radiates light energy over much of the electromagnetic spectrum

Most of Sol' s radiation is in the "visible" part of the spectrum, but it can release much higher and lower energy radiation.

Sol - The Solar System' s Star

Sol - The Solar System' s Star

Hydrogen fusion primarily occurs in the core (temperature $=14,000,000 \mathrm{~K}$)

Temperature drops with distance from the core. The surface of Sol is "only" $6,000 \mathrm{~K}$.

Sol - The Solar System' s Star

A solar prominence imaged by the SOHO satellite. A prominence is an eruption of plasma that escapes the atmosphere of the Sun (at least temporarily).

Prominences are frequently huge (this one is as long as 35 Earths).

Sol - Eruption

Our Solar System

Planetary Axial Tilts

Obliquity of the Nine Planets

All planets are tilted somewhat with respect to their orbital plane. The greater the tilt, the greater the seasonality (difference between winter and summer) on the planet.

Inner Planet Orbits

Orbital speed decreases with distance from Sun

Orbital speed decreases with distance from Sun

Inner Planets versus Outer Planets

Neptune Uranus
Saturn Jupiter

	Mars Earth low density high mass
Venus	
Mercury	

Large and gassy Small and Rocky

Density ($\mathrm{g} / \mathrm{cm}^{3}$)

$0.7-1.6$ low density	$3.9-5.5$ high density
Escape Velocity (km/sec)	
$\begin{aligned} & 21.1-59.6 \\ & \text { high mass } \end{aligned}$	$4.3-11.2$ low mass

Jəuu|

The Inner Planets

- Radius: 2,439 km
- Surface Temperature: - 183 to $427^{\circ} \mathrm{C}$
- Atmosphere - He(42\%), Na(42\%), O(15\%)

Core: 60-70\% Iron
Mantle: rocky
Crust: thin (<100 km)

The Inner Planets

© Venus is covered in thick clouds, that give it a serene look from space.
© The surface, however, is a tortured landscape with unbearable pressures, high temperatures, and a vile atmosphere.

The Inner Planets

Venus

http://www.arcadiastreet.com/cgvistas/mercury_002a.htm
© Radius: 6,052 km
© Surface Temperature: $455^{\circ} \mathrm{C}$
© Atmosphere: $\mathrm{CO}_{2}(96 \%), \mathrm{N}_{2}(3 \%)$; also $\mathrm{H}_{2} \mathrm{O}, \mathrm{Ar}, \mathrm{CO}, \mathrm{Ne}, \mathrm{SO}_{2}, \mathrm{HCl}, \mathrm{HF}$

Core: under debate
Mantle: under debate
Crust: basalt, thin ($25-60 \mathrm{~km}$)

The Inner Planets

The Inner Planets

- The Earth has an unusually large satellite - the Moon. The Moon is similar in size to the larger satellites of the gas giants like Jupiter.
e Earth' s Moon is in revolution-rotation synch with the Earth. It rotates on its axis once for every revolution around the Earth - i.e., the same side of the
 Moon always faces the Earth.

The Inner Planets

 MarsMartian Sunset

An enhanced image of a Martian sunset as seen by the Sojourner rover in 1997

The Inner Planets

Mars

e Radius: 3,397 km
e Surface Temperature: - 140 to $20^{\circ} \mathrm{C}$
e Atmosphere: CO_{2} (95\%), N_{2} (2.1\%), Ar (1\%), $\mathrm{O}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ne}, \mathrm{Kr}, \mathrm{Xe}, \mathrm{O}_{3}$

Core: under debate
Mantle: under debate
Crust: varied

The Inner Planets

NASA/JPL/Malin Space Science Systems

Earth and Moon as seen from the Mars Global Surveyer in orbit around Mars

The Outer Planets

eJupiter is the largest of the Solar System's planets, and the second largest object in the Solar System.
eLike other gas giants, dozens of moons (some as large as Mercury) orbit this huge planet.

The Outer Planets

e Radius: 71,492 km

- Cloud Temperature: $-121^{\circ} \mathrm{C}$
e Atmosphere: H_{2} (90\%), He (10\%),
$\mathrm{CH}_{4}, \mathrm{CO}, \mathrm{NH}_{3}, \mathrm{C}_{2} \mathrm{H}_{6}$

Outer: gaseous H
Middle: increasing pressure, H acts as liquid, and then liquid metal

Inner: "icy" layer of heavier molecules $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4}, \mathrm{NH}_{3}\right)$

Core: rock or rocky "ice" up to 10x mass of Earth

The Outer Planets

Jupiter's Moons
eThe composition of Jupiter's moons is highly variable. Some are icy, some are rocky, and least one (IO) is volcanic!
© One moon (Europa) is covered in what appears to be water ice, perhaps covering a vast, global ocean.

The Outer Planets

- Saturn is twice as far from the Sun as Jupiter.
- Saturn has a large number of moons, but the most spectacular feature is the beautiful ring system orbiting the planet.

The Outer Planets

- Radius: 60,268 km
- Surface Temperature: - $176^{\circ} \mathrm{C}$
- Atmosphere: H_{2} (97\%), $\mathrm{He}(3 \%), \mathrm{CH}_{4}$, $\mathrm{NH}_{3}, \mathrm{C}_{2} \mathrm{H}_{6}$

Outer: gaseous H, He
Middle: increasing pressure, H acts as liquid, and then solid

Inner: "icy" layer of heavier molecules $\left(\mathrm{H}_{2} \mathrm{O}\right.$, $\left.\mathrm{NH}_{4}, \mathrm{NH}_{3}\right)$

Core: rock or rocky "ice"

The Outer Planets

Uranus

- Uranus is a typical gas giant in a lot ways (rings, lots of moons, etc.).
- However, its axis of rotation is "tipped over" on its side, presumably resulting in extreme seasonality.

The Outer Planets

Uranus

Uranus, Rings and Satellites HST. WFPC2

Hubble Telescope image of Uranus and its rings and moons

The Outer Planets

Uranus

- Radius: 25,559 km
- Surface Temperature: $-216^{\circ} \mathrm{C}$
- Atmosphere: H_{2} (82\%), He (15\%), CH_{4} (2\%)

Outer: $\mathrm{H}_{2}, \mathrm{He}, \mathrm{CH}_{4}$
Mantle: $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$ under high temperature and pressure
Inner: "icy" layer of heavier molecules $\left(\mathrm{H}_{2} \mathrm{O}\right.$, $\left.\mathrm{NH}_{4}, \mathrm{NH}_{3}\right)$

Core: rock or rocky "ice" of 1 Earth mass or so

The Outer Planets

- Radius: 24,746 km
- Surface Temperature: - $193^{\circ} \mathrm{C}$
- Atmosphere: H_{2} (85\%), He (13\%), CH_{4} (2\%)

Outer: $\mathrm{H}_{2}, \mathrm{He}, \mathrm{CH}_{4}$
Mantle: $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$ under high temperature and pressure

Inner: "icy" layer of heavier molecules $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4}\right.$, NH_{3})

Core: rock or rocky "ice" of 1 Earth mass or so

