

Earthquake Hazard Map

http://pubs.usgs.gov/fs/2003/fs017-03/

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photo by National Geophysical Data Center

Earthquake-induced ground movement sometimes leave traces on the surface

Photo by Univ. of Colorado; courtesy National Geophysical Data Center, Boulder, CO

http://www.scoop.co.nz/stories/images/0601/e98b6785f8c3230d28b4.jpeg

http://sar.informatik.hu-berlin.de/research/projects/2006-EWS/ews.htm

http://www.lib.washington.edu/fish/earthquake2.jpg

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Comparison of Earthquake Magnitude, Description, Intensity, and Expected Annual World Occurrence

Richter Magnitude	Description	Maximum Expected Mercalli Intensity at Epicenter	Annual Expected
magnitude	Description		Number
2.0	Very Minor	I Usually detected only by instruments	600,000
2.0-2.9	Very Minor	I-II Felt by some indoors; especially on upper floors	300,000
3.0-3.9	Minor	III Felt indoors	49,000
4.0-4.9	Light	IV-V Felt by most; slight damage	6,200
5.0-5.9	Moderate	VI–VII Felt by all; damage minor to moderate	800
6.0-6.9	Strong	VII-VIII Everyone runs outdoors; moderate to major damage	266
7.0-7.9	Major	IX-X Major damage	18
8.0 or higher	Great	X-XII Major and total damage	1 or 2

The Richter Scale is a logarithmic scale that measures the magnitude of an earthquake. A magnitude 5.0 quake has Earth movements ten times greater than a 4.0 magnitude quake (= ~32x the energy released).

In theory, the local crust melts in a magnitude 10 or greater quake. The most energetic quake recorded to date had a magnitude of approximately 9.0.

Japan – March 11, 2011 Magnitude: 9.0 Confirmed deaths: 15,883 (with tsunami)

Year	Epicenter	Mag.	Deaths
1960	Chile	9.5	1,650
1964	Prince William Sound, AK	9.2	128 (with tsunami)
2004	Sumatra	9.1	227,000 (with tsunami)
1952	Kamchatka, Russia	9.0	none
1906	Ecuador (off coast)	8.8	~1,000 (with tsunami)
2010	Chile	8.8	~1,000 (with tsunami)
1965	Rat Islands, AK	8.7	none
2005	Northern Sumatra	8.6	~1,000 (small tsunami, no deaths)
1950	Assam, Tibet	8.6	~780 (+536 killed in dam-break flood)
1957	Andreanof Islands, AK	8.6	none (with major tsunami and eruption)

Larges

http://earthquake.usgs.gov/regional/world/most_destructive.php

Deadliest Earthquakes in History

Year	Epicenter	Mag.	Deaths	
1556	Shensei, China	~8	830,000	Ming Dynasty
1976	Tangshan, China	7.5	255,000	(actual death toll ~500,000)
2010	Port of Prince, Haiti	7.0	230,000	
1138	Aleppo, Syria	n/a	230,000	
2004	Sumatra	9.1	227,000	(Christmas Tsunami)
856	Iran	n/a	200,000	
1920	Ning-hsia, China	7.8	200,000	
893	Iran	na	150,000	
1923	Kanto, Japan	7.9	142,000	(Great Tokyo Fire)
1948	Turkmenistan	7.3	110,000	
1929	Chihli, China	n/a	100,000	
2005	Pakistan	7.6	86,000	

http://earthquake.usgs.gov/regional/world/most_destructive.php

A Primary wave

B Secondary wave

Direction of Rayleigh wave propagation

Seismic Waves - Surface

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Seismic Waves – Body Waves

132 C.E. Chinese invent first earthquake recorder

1875 C.E Invention of first accurate seismograph

1906 C.E San Francisco earthquake recorded by first wide-spread seismic network

http://www.central.k12.ca.us/akers/inventions.html

http://www.fathom.com/feature/122149

http://www.mssc.edu/seg-vm/pict0688.html

Seismograms

Seismogram – record of ground movement produced by a seismograph

P-wave velocity will always be higher than S-wave velocity, no matter what the waves travel through.

P-waves arrive at the station first, followed by S-waves and later by surface waves.

Because S-waves travel more slowly than P-waves, the farther the waves have traveled, the farther behind the S-waves will be and the longer the time gap until they arrive.

Waves arrive in Denver

distance: 2000 km

Waves arrive in St. John's

distance: 5300 km

Waves arrive in Lima

distance: 9000 km

Nuclear Non-Proliferation

Partial Test Ban Treaty, 1963 - banned testing in atmosphere, oceans, and space

Non-proliferation Treaty, 1968 - banned non-nuclear powers from developing nuclear weapons

Comprehensive Test Ban Treaty, 1996 - banned all nuclear testing

Threshold Test Ban Treaty, 1974. Seabed Treaty, 1971. Outer Space Treaty, 1967. Antarctic Treaty, 1959.

A nuclear explosion will cause seismic waves, and many seismic stations participate in test-ban monitoring.

http://nuketesting.enviroweb.org/hew/

Body Waves

Unlike surface waves, body waves move through the bulk of the Earth.

By understanding the properties of different kinds of body waves, we can gather data about the structure of the Earth's interior.

S-Waves versus P-Waves

P-Waves

pressure wave forms, equivalent to sound waves

S-Waves

shear wave forms

faster

Moves through: *solid, liquid, gas*

slower

Moves through: solid only

Mohorovicic´ Discontinuity

The boundary between the Earth's crust and mantle is marked by a velocity discontinuity.

It is called the Moho for short. Similar discontinuities mark the boundaries between the other layers of the Earth.

Mohorovičić discontinuity Asthenosphere Upper mantle	Moho D	Discontinuity		
		Thickness (km)	Densit (g/cm	ty Typical ³) Rocks
	Crust	30	2.2 2.9	silica rocks andesite, basalt at base
Solid iron core Liquid iron core Lower mantle Inttp://www.glossary.oilfield.slb.com	Upper Mantle	720	3.4	peridodite, eclogite, olivine, spinel, garnet, pryoxene
	Lower Mantle	2,171	4.4	magnesium and silicon oxides
	Outer Core	2,259	9.9	iron+oxygen, sulfur, nickel alloy (liquid)
uppermost mantle and lowermost crust is	Inner Core	1,221	12.8	iron+oxygen, sulfur,
aethenosphere	Center		13.1	nickel alloy (solid)

http://pubs.usgs.gov/gip/interior/