KEY - EXAMI

Problem1:

- (II) In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less than 520 nm.
- (a) What is the work function of this material?

What is the work function of this material?

$$K = hf - f$$
 $A = flo nm$ so the thershold

 $hf - flo = flo nm$ so the thershold

 $hf - flo = flo nm$ so the thershold

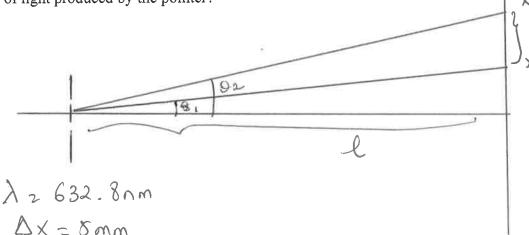
 $flo = flo nm$ so the thermhold

 $flo = flo nm$ so the thermhold

 $flo nm$ so the thermhold

 $flo = flo nm$ so the thermhold

 $flo nm$ so t


(b) What is the stopping voltage required if light of wavelength 470 nm is used?

$$\Delta U_2 = \Delta K_2 - 9\Delta V$$

$$\Delta K_2 - (-e\Delta V) = e\Delta V$$

$$\Delta V_2 = \Delta K_2 = 0.2 \text{ TeV}$$

Problem 2: A red laser from the physics lab is marked as producing 632.8-nm light. When light from this laser falls on two closely spaced slits, an interference pattern formed on a wall several meters away has bright fringes spaced 5.00 mm apart near the center of the pattern. When the laser is replaced by a small laser pointer, the fringes are 5.14 mm apart. What is the wavelength of light produced by the pointer?

2? for 5.14 mm

dsmoz ma

ton 9 2 sme = 0 = X

m 21 dsm 0= d = 2 ml = X= ml; X= mll $X_{1} = \frac{\lambda_{1}e}{d}$ \times $X_{2} = \frac{\lambda_{1}e}{d}$ \Rightarrow $\lambda_{1} = \frac{X_{1}d}{e}$ \times $\lambda_{2} = \frac{X_{2}d}{e}$ $\frac{d}{e}$ = $\frac{\lambda_{1}}{X_{1}} = \frac{5.14 \text{ nm}}{5.0 \text{ nm}} (632.8 \text{ nm})$ **Problem 3:** X-rays of wavelength λ =0.120nm are scattered from carbon. What is the expected Compton wavelength shift for photons detected at angles (relative to the incident beam) of exactly

(a) 60°,
$$\lambda = \lambda + \frac{h}{mec} (1 - 00060°)$$

$$\lambda' = 0.120 \, \text{nm} + 0.00243 \, \text{nm} \left[1 - \cos 60^{\circ} \right] = 0.1212 \, \text{nm}$$

$$\Delta \lambda = 0.0012 \, \text{nm}$$

(a) 180°?

Problem4:

What is the speed of a pion if its average lifetime is measured to be $4.40 \times 10^{-8}s$. At rest, its average lifetime is $2.60 \times 10^{-8}s$

The open so determined from the fine delation relationship

$$\begin{aligned}
\nabla_{z}? \\
\Delta t_{0} &= \Delta t & | I - \frac{U^{2}}{C^{2}} & \Rightarrow \Delta t_{0} \\
\Delta t &= | I - \frac{U^{2}}{C^{2}} & \Rightarrow \Delta t_{0} \\
&\Rightarrow \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} &= | I - \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} \\
&\Rightarrow \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} &= | I - \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} \\
&\Rightarrow \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} &= | I - \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} \\
&\Rightarrow \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} &= | I - \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} \\
&\Rightarrow \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} &= | I - \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} \\
&\Rightarrow \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} &= | I - \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} \\
&\Rightarrow \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} &= | I - \left(\frac{\Delta t_{0}}{\Delta t} \right)^{2} \\
&= 0.807c = 2.492 \times 10^{8} \frac{M}{s}
\end{aligned}$$

Problem 5:

18)

The wave nature of electrons is manifested in experiments where an electron beam interacts with the atoms on the surface of a solid. By studying the angular distribution of the diffracted electrons, one can indirectly measure the geometrical arrangement of atoms. Assume that the electrons strike perpendicular to the surface of a solid, and that their energy is low, K = 100 eV, so that they interact only with the surface layer of atoms. If the smallest angle at which a diffraction maximum occurs is at 24°, what is the separation d between the atoms on the surface?

dsing
$$\frac{h^2}{h^2}$$
 $\frac{h^2}{h^2}$ $\frac{h^2}{h$

Problem 6: Suppose you decide to travel to a star 65 light-years away at a speed that tells you the distance is only 25 light-years. How many years would it take you to make the trip?

The speed will be determined from the light outraction $l = lo \left(1 - \frac{v^2}{c^2} \right) = \frac{l}{lo} = \frac{v^2}{c^2}$ $= \frac{1}{2} \left(\frac{1}{40} \right)^{2} = \frac{1 - \left(\frac{1}{40} \right)^{2}}{C^{2}} = \frac{1 - \left(\frac{1}{40} \right)^{2}}{C^{2}}$ $\frac{V}{C}^{2} \sqrt{1 - \left(\frac{\ell}{\ell_{0}}\right)^{2}} \Rightarrow V_{2} C \sqrt{1 - \left(\frac{\ell}{\ell_{0}}\right)^{2}}$ and $t = \frac{l}{c} = \frac{l}{c\sqrt{1-\left(\frac{l}{l_0}\right)^2}}$ $t = \frac{2\sigma ly}{C \sqrt{1 - (\frac{2\sigma ly}{6\sigma ly})^2}} = \frac{(2ry)c}{C(0.923)}$