2.	(a)	214	3 significant figures
----	-----	-----	-----------------------

3. (a)
$$1.156 = 1.156 \times 10^{0}$$

(b)
$$21.8 = 2.18 \times 10^{1}$$

(c)
$$0.0068 = 6.8 \times 10^{-3}$$

(d)
$$328.65 = 3.2865 \times 10^2$$

(e)
$$0.219 = 2.19 \times 10^{-1}$$

(f)
$$444 = \boxed{4.44 \times 10^2}$$

7. To add values with significant figures, adjust all values to be added so that their exponents are all the same.

$$(9.3 \times 10^3 s) + (8.3 \times 10^4 s) + (0.008 \times 10^6 s) = 9.2 \times 10^3 s + 83 \times 10^3 s + 8 \times 10^3 s = 1.0 \times 10^5 s$$

When adding, keep the least accurate value, and so keep to the "ones" place in the last set of parentheses.

11.	(a)	286.6 mm	$286.6 \times 10^{-3} \mathrm{m}$	0.2866 m
	(<i>b</i>)	$85 \mu\mathrm{V}$	$85 \times 10^{-6} V$	0.000 085 V
	(c)	760 mg	$760 \times 10^{-6} \text{kg}$	0.00076 kg (if last zero is not
signific	cant)			
	(<i>d</i>)	60.0 ps	$60.0 \times 10^{-12} \mathrm{s}$	0.000000000000 s
	(<i>e</i>)	22.5 fm	$22.5 \times 10^{-15} \mathrm{m}$	0.000 000 000 000 022 5 m
	<i>(f)</i>	2.50 gigavolts 2.5×	2,500 volts	0,000,000 volts

- 13. Assuming a height of 5 feet 10 inches, then 5'10'' = (70 in)(1 m/39.37 in) = 1.8 m. Assuming a weight of 165 lbs, then (165 lbs)(0.456 kg/1 lb) = 75.2 kg. Technically, pounds and mass measure two separate properties. To make this conversion, we have to assume that we are at a location where the acceleration due to gravity is 9.80 m/s^2 .
- 19. (a) $(1 \text{km/h}) \left(\frac{0.621 \text{ mi}}{1 \text{ km}}\right) = 0.621 \text{ mi/h}$, and so the conversion factor is $\frac{0.621 \text{ mi/h}}{1 \text{ km/h}}$.
 - (b) $(1 \text{ m/s}) \left(\frac{3.28 \text{ ft}}{1 \text{ m}} \right) = 3.28 \text{ ft/s}$, and so the conversion factor is $\left[\frac{3.28 \text{ ft/s}}{1 \text{ m/s}} \right]$.
 - (c) $\left(1 \text{ km/h}\right) \left(\frac{1000 \text{ m}}{1 \text{ km}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) = 0.278 \text{ m/s}$, and so the conversion factor is $\left[\frac{0.278 \text{ m/s}}{1 \text{ km/h}}\right]$
- 23. The surface area of a sphere is found by $A = 4\pi r^2 = 4\pi (d/2)^2 = \pi d^2$.
 - (a) $A_{\text{Moon}} = \pi D_{\text{Moon}}^2 = \pi (3.48 \times 10^6 \,\text{m})^2 = \boxed{3.80 \times 10^{13} \,\text{m}^2}$
 - (b) $\frac{A_{\text{Earth}}}{A_{\text{Moon}}} = \frac{\pi D_{\text{Earth}}^2}{\pi D_{\text{Moon}}^2} = \left(\frac{D_{\text{Earth}}}{D_{\text{Moon}}}\right)^2 = \left(\frac{R_{\text{Earth}}}{R_{\text{Moon}}}\right)^2 = \left(\frac{6.38 \times 10^6 \,\text{m}}{1.74 \times 10^6 \,\text{m}}\right)^2 = \boxed{13.4}$