Name KEY

Problem 1: (34 Points)

A box of mass m is placed on a smooth incline that makes an angle θ with the horizontal.

(a) Draw the Free Body Diagram

No fration face - smooth incline

(b) Determine the normal force on the box.

(c) Determine the box's acceleration.

8

(d) Evaluate for a mass m = 20 kg and an incline of $\theta = 30^{\circ}$.

 $F_N = mg \cos \theta = (20 \text{ kg})(9.8 \frac{m}{52})\cos 30^\circ = 169.15 \text{ N}$ $\alpha = g \sin \theta = (9.8 \frac{m}{52}) \sin 30^\circ = 4.9 \frac{m}{52}$

Name____

Problem 2: (33Points)

A constant force $\vec{F} = (3.0\hat{\imath} + 5.0\hat{\jmath})$ N acts on an object as it moves along a straight-line path. If the object's displacement is $\vec{d} = (6.0\hat{\imath} + 2.0\hat{\jmath})$ m, calculate the work done by \vec{F} .

$$W = \frac{2}{3.01} + \frac{3}{5.0}$$
 (8)
= (3.0)(6.0) +(5.0)(2.0) (8)
 $W = \frac{13+10}{228}$ (5.0)(2.0)

Name

Problem 3: (33 Points)

You know your mass is 65 kg, but when you stand on a bathroom scale in an elevator, it says your mass is 76 kg. What is the acceleration of the elevator, and in which direction?

FN: reading of the scale = W': apparent work.

The foreman as a z FN-mo () (m = 65 kg realmont m 2 M'= 76 kg (appending)

$$a = \frac{m'g - mg}{m}$$

 $a = \frac{m'g - mg}{m} = \frac{g(m'-m)}{65kg} = \frac{(9.8 \frac{m}{52})(76 kg - 65 \frac{kg}{5})}{65 kg}$

a= 1.85mls2

it le posteri de Me acceleration de upward.